Browsing by Author "Ribeiro-Barros, Ana I."
Now showing 1 - 10 of 48
Results Per Page
Sort Options
- Agronomic performance and genetic divergence between genotypes of Manihot esculentaPublication . Giles, João António D.; Oliosi, Gleison; Rodrigues, Weverton P.; Braun, Heder; Ribeiro-Barros, Ana I.; Partelli, Fábio I.The morphoagronomic characterization of 12 genotypes of M. esculenta was performed during the 2013/2014 and 2014/2015 crop years. The 12 genotypes were planted in a randomized block design, with four replicates per genotype. Number of tuberous roots per plant, weight of tuberous roots, root yield, total plant weight, harvest index, plant height, height of first branch, number of shoots, stem diameter, number of buds, leaf dry weight and petiole length were evaluated. Genotypes “Camuquem” and “Goiás” were the most productive, and “Amarela” and “Gema de Ovo” were the most divergent. Seventy percent of genetic diversity was due to petiole length (22.86%), root yield (19.20%), weight of tuberous roots (14.89%) and number of buds (13.72%). Overall, the present results indicate a broad genetic basis for the evaluated genotypes, so that such genetic variation benefits the plant breeding for future scenarios Further studies of the evaluated genotypes should be performed under environmental limitations, using biochemical and molecular tools to identify markers for genetic improvement
- Assessing the impact of rice cultivation and off-season period on dynamics of soil enzyme activities and bacterial communities in two agro-ecological regions of MozambiquePublication . Ezeokoli, Obinna T.; Nuaila, Valter N.A.; Obieze, Chinedu C.; Muetanene, Belo A.; Fraga, Irene; Tesinde, Maria Natália; Ndayiragije, Alexis; Coutinho, João; Melo, Ana M.P.; Adeleke, Rasheed A.; Ribeiro-Barros, Ana I.; Fangueiro, DavidSoil ecosystem perturbation due to agronomic practices can negatively impact soil productivity by altering the diversity and function of soil health determinants. Currently, the influence of rice cultivation and off-season periods on the dynamics of soil health determinants is unclear. Therefore, soil enzyme activities (EAs) and bacterial community compositions in rice-cultivated fields at postharvest (PH) and after a 5-month off-season period (5mR), and fallow-fields (5-years-fallow, 5YF; 10-years-fallow, 10YF and/or one-year-fallow, 1YF) were assessed in two agroecological regions of Mozambique. EAs were mostly higher in fallow fields than in PH, with significant (p < 0.05) differences detected for -glucosidase and acid phosphatase activities. Only -glucosidase activity was significantly (p < 0.05) different between PH and 5mR, suggesting that -glucosidase is responsive in the short-term. Bacterial diversity was highest in rice-cultivated soil and correlated with NO3 , NH4 + and electrical conductivity. Differentially abundant genera, such as Agromyces, Bacillus, Desulfuromonas, Gaiella, Lysobacter, Micromonospora, Norcadiodes, Rubrobacter, Solirubrobacter and Sphingomonas were mostly associated with fallow and 5mR fields, suggesting either negative effects of rice cultivation or the fallow period aided their recovery. Overall, rice cultivation and chemical parameters influenced certain EAs and shaped bacterial communities. Furthermore, the 5-month off-season period facilitates nutrient recovery and proliferation of plant-growth-promoting bacteria
- Breeding Elite Cowpea [Vigna unguiculata (L.) Walp] Varieties for Improved Food Security and Income in Africa: Opportunities and ChallengesPublication . Gomes, Ana Maria Figueira; Nhantumbo, Nascimento; Ferreira-Pinto, Manuela; Massinga, Rafael; Ramalho, José C.; Ribeiro-Barros, Ana I.Cowpea, Vigna unguiculata (L.) Walp, is among the most important grain legumes in Africa. Its nutritional value and biological nitrogen fixation (BNF) potential coupled with a high plasticity to environmental conditions places this legume in a unique position in Sub-Saharan Africa (SSA) in the context of food and nutritional security. However, cowpea yield and BNF contribution to agricultural systems in this sub-continent is far behind the average global values. The inability to run effective breeding programs to timely generate and deliver high yielding, nutritious and climate smart cowpea varieties, coupled with poor crop husbandry practices has been in the forefront of the current situation. In this chapter, the main constrains and opportunities to establish and run successful and effective cowpea production and breading programs in SSA are discussed. The discussion is built around the argument that SSA can benefit from its rich collection of landraces, as well as from high-throughput methodologies to assist the screening and the development of adapted, high yielding and nutritious varieties
- Can elevated air (CO2) conditions mitigate the predicted warming impact on the quality of coffee bean ?Publication . Ramalho, José C.; Pais, Isabel P.; Leitão, António E.; Guerra, Mauro; Reboredo, Fernando H.; Máguas, Cristina M.; Carvalho, Maria L.; Scotti-Campos, Paula; Ribeiro-Barros, Ana I.; Lidon, Fernando J.C.; DaMatta, Fábio M.Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 mL CO2 L1 air, and then submitted to a gradual temperature rise from 25 C up to 40 C during ca. 4 months. Fruits were harvested at 25 C, and in the ranges of 30–35 or 36–40 C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating the heat impact on physical and chemical traits of coffee beans, which is clearly relevant in a context of predicted climate change and global warming scenarios
- Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?Publication . Ramalho, José C.; Pais, Isabel P.; Leitão, António E.; Guerra, Mauro; Reboredo, Fernando H.; Máguas, C.; Carvalho, Maria L.; Scotti-Campos, Paula; Ribeiro-Barros, Ana I.; Lidon, Fernando J. C.; DaMatta, Fábio M.Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30–35 or 36–40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating the heat impact on physical and chemical traits of coffee beans, which is clearly relevant in a context of predicted climate change and global warming scenarios.
- Comparative proteomic analysis of nodulated and non-nodulated Casuarina glauca Sieb. ex Spreng. grown under salinity conditions using sequential window acquisition of all theoretical mass spectra (SWATH-MS)Publication . Graça, Inês; Mendes, Vera M.; Marques, Isabel; Duro, Nuno; Costa, Mário; Ramalho, José C.; Pawlowski, Katharina; Manadas, Bruno; Ricardo, Cândido Pinto; Ribeiro-Barros, Ana I.Casuarina glauca displays high levels of salt tolerance, but very little is known about how this tree adapts to saline conditions. To understand the molecular basis of C. glauca response to salt stress, we have analyzed the proteome from branchlets of plants nodulated by nitrogen-fixing Frankia Thr bacteria (NOD+) and non-nodulated plants supplied with KNO3 (KNO3 +), exposed to 0, 200, 400, and 600 mM NaCl. Proteins were identified by Short Gel, Long Gradient Liquid Chromatography coupled to Tandem Mass Spectrometry and quantified by Sequential Window Acquisition of All Theoretical Mass Spectra -Mass Spectrometry. 600 proteins were identified and 357 quantified. Differentially Expressed Proteins (DEPs) were multifunctional and mainly involved in Carbohydrate Metabolism, Cellular Processes, and Environmental Information Processing. The number of DEPs increased gradually with stress severity: (i) from 7 (200 mM NaCl) to 40 (600 mM NaCl) in KNO3 +; and (ii) from 6 (200 mM NaCl) to 23 (600 mM NaCl) in NOD+. Protein–protein interaction analysis identified di erent interacting proteins involved in general metabolic pathways as well as in the biosynthesis of secondary metabolites with different response networks related to salt stress. Salt tolerance in C. glauca is related to a moderate impact on the photosynthetic machinery (one of the first and most important stress targets) as well as to an enhancement of the antioxidant status that maintains cellular homeostasis
- Diversification of African Tree Legumes in Miombo–Mopane WoodlandsPublication . Maquia, Ivete; Catarino, Silvia; Pena, Ana R.; Brito, Denise R.A.; Ribeiro, Natasha. S.; Romeiras, Maria M.; Ribeiro-Barros, Ana I.The southern African Miombo and Mopane ecoregions constitute a unique repository of plant diversity whose diversification and evolutionary history is still understudied. In this work, we assessed the diversity, distribution, and conservation status of Miombo and Mopane tree legumes within the Zambezian phytoregion. Data were retrieved from several plant and gene databases and phylogenetic analyses were performed based on genetic barcodes. Seventy-eight species (74 from Miombo and 23 from Mopane, 19 common to both ecoregions) have been scored. Species diversity was high within both ecoregions, but information about the actual conservation status is scarce and available only for ca. 15% of the species. Results of phylogenetic analyses were consistent with current legume classification but did not allow us to draw any conclusion regarding the evolutionary history of Miombo and Mopane tree legumes. Future studies are proposed to dissect the diversity and structure of key species in order to consolidate the network of conservation areas.
- Diversification of African tree legumes in Miombo-Mopane woodlandsPublication . Maquia, Ivete; Catarino, Sílvia; Pena, Ana R.; Brito, Denise R.A.; Ribeiro, Natasha S.; Romeiras, Maria; Ribeiro-Barros, Ana I.The southern African Miombo and Mopane ecoregions constitute a unique repository of plant diversity whose diversification and evolutionary history is still understudied. In this work, we assessed the diversity, distribution, and conservation status of Miombo and Mopane tree legumes within the Zambezian phytoregion. Data were retrieved from several plant and gene databases and phylogenetic analyses were performed based on genetic barcodes. Seventy-eight species (74 from Miombo and 23 from Mopane, 19 common to both ecoregions) have been scored. Species diversity was high within both ecoregions, but information about the actual conservation status is scarce and available only for ca. 15% of the species. Results of phylogenetic analyses were consistent with current legume classification but did not allow us to draw any conclusion regarding the evolutionary history of Miombo and Mopane tree legumes. Future studies are proposed to dissect the diversity and structure of key species in order to consolidate the network of conservation areas
- Diversity in Coffea arabica cultivars in the mountains of Gorongosa National Park, Mozambique, regarding bean and leaf nutrient accumulation and physical fruit traitsPublication . Alberto, Niquisse J.; Ramalho, José C.; Ribeiro-Barros, Ana I.; Viana, Alexandre P.; Krohling, Cesar A.; Moiane, Sional S.; Alberto, Zito; Rodrigues, Weverton P.; Partelli, Fábio L.Genetic characteristics and their interaction with environmental conditions, including nutritional management, determine coffee productivity and quality. The objective of this study was to evaluate fruit traits and nutrient accumulation in the fruit, husk, and bean, as well as in the leaves of different Coffea arabica cultivars cropped in the Gorongosa National Park, Mozambique. The experiment evaluated nine coffee cultivars in a randomized block design, with four replicates. Fruit and leaf samples were collected over two months (June and July 2021), in the fruit maturation phase, oven-dried and analyzed, namely, through a clustering unweighted pair group method with arithmetic mean (UPGMA). The characterization of ripe and dried coffee bean indicated differences in the performance of the cultivars. The accumulation of the macronutrients N, K, and Ca and micronutrients Fe, Mn, and B was highest in the bean, husk, fruit, and leaves of the evaluated cultivars. Nutrient concentrations and accumulation in the different evaluated organs have a direct influence on the nutritional crop management. This is crucial for a nutritional diagnosis that ensures high yields, but such mineral levels are also a result of the existing genetic diversity among cultivars, which must be taken into account for management and breeding purposes
- Diversity of Cowpea [Vigna unguiculata (L.) Walp] Landraces in Mozambique: New Opportunities for Crop Improvement and Future Breeding ProgramsPublication . Gomes, Ana Maria Figueira; Draper, David; Nhantumbo, Nascimento; Massinga, Rafael; Ramalho, José C.; Marques, Isabel; Ribeiro-Barros, Ana I.Cowpea (Vigna unguiculata) is a neglected crop native to Africa, with an outstanding potential to contribute to the major challenges in food and nutrition security, as well as in agricultural sustainability. Two major issues regarding cowpea research have been highlighted in recent years—the establishment of core collections and the characterization of landraces—as crucial to the implementation of environmentally resilient and nutrition-sensitive production systems. In this work, we have collected, mapped, and characterized the morphological attributes of 61 cowpea genotypes, from 10 landraces spanning across six agro-ecological zones and three provinces in Mozambique. Our results reveal that local landraces retain a high level of morphological diversity without a specific geographical pattern, suggesting the existence of gene flow. Nevertheless, accessions from one landrace, i.e., Maringué, seem to be the most promising in terms of yield and nutrition-related parameters, and could therefore be integrated into the ongoing conservation and breeding efforts in the region towards the production of elite varieties of cowpea.
