Repository logo
 
Loading...
Profile Picture
Person

Lopes-da-Costa, Luís

Search Results

Now showing 1 - 4 of 4
  • Impact of heat stress on bovine sperm quality and competence
    Publication . Capela, Luís; Leites, Inês; Romano, Ricardo; Lopes-da-Costa, Luís; Pereira, Rosa M. Lino Neto
    Global warming has negatively influenced animal production performance, in addition to animal well-being and welfare, consequently impairing the economic sustainability of the livestock industry. Heat stress impact on male fertility is complex and multifactorial, with the fertilizing ability of spermatozoa affected by several pathways. Among the most significative changes are the increase in and accumulation of reactive oxygen species (ROS) causing lipid peroxidation and motility impairment. The exposure of DNA during the cell division of spermatogenesis makes it vulnerable to both ROS and apoptotic enzymes, while the subsequent post-meiotic DNA condensation makes restoration impossible, harming later embryonic development. Mitochondria are also susceptible to the loss of membrane potential and electron leakage during oxidative phosphorylation, lowering their energy production capacity under heat stress. Although cells are equipped with defense mechanisms against heat stress, heat insults that are too intense lead to cell death. Heat shock proteins (HSP) belong to a thermostable and stress-induced protein family, which eliminate protein clusters and are essential to proteostasis under heat stress. This review focuses on effects of heat stress on sperm quality and on the mechanisms leading to defective sperm under heat stress.
  • Progesterone differentially affects the transcriptomic profiles of cow endometrial cell types
    Publication . Pereira, Gonçalo; Guo, YZ; Silva, E; Bevilacqua, C; Charpigny, G; Lopes-da-Costa, Luís; Humblot, P
    Background: The endometrium is a heterogeneous tissue composed of luminal epithelial (LE), glandular epithelial (GE), and stromal cells (ST), experiencing progesterone regulated dynamic changes during the estrous cycle. In the cow, this regulation at the transcriptomic level was only evaluated in the whole tissue. This study describes specifc gene expression in the three types of cells isolated from endometrial biopsies following laser capture microdissection and the transcriptome changes induced by progesterone in GE and ST cells. Results: Endometrial LE, GE, and ST cells show specifc transcriptomic profles. Most of the diferentially expressed genes (DEGs) in response to progesterone are cell type-specifc (96%). Genes involved in cell cycle and nuclear divi sion are under-expressed in the presence of progesterone in GE, highlighting the anti-proliferative action of pro gesterone in epithelial cells. Elevated progesterone concentrations are also associated with the under-expression of estrogen receptor 1 (ESR1) in GE and oxytocin receptor (OXTR) in GE and ST cells. In ST cells, transcription factors such as SOX17 and FOXA2, known to regulate uterine epithelial-stromal cross-talk conveying to endometrial receptivity, are over-expressed under progesterone infuence. Conclusions: The results from this study show that progesterone regulates endometrial function in a cell type-spe cifc way, which is independent of the expression of its main receptor PGR. These novel insights into uterine physiol ogy present the cell compartment as the physiological unit rather than the whole tissue.
  • Notch signaling in mouse blastocyst development and hatching
    Publication . Batista, Mariana R.; Diniz, Patrícia; Torres, Ana; de Moura Murta, Daniel; Lopes-da-Costa, Luís; Silva, Elisabete
    Background: Mammalian early embryo development requires a well-orchestrated interplay of cell signaling pathways. Notch is a major regulatory pathway involved in cell-fate determination in embryonic and adult scenarios. However, the role of Notch in embryonic pre-implantation development is controversial. In particular, Notch role on blastocyst development and hatching remains elusive, and a complete picture of the transcription and expression patterns of Notch components during this time-period is not available. Results: This study provided a comprehensive view on the dynamics of individual embryo gene transcription and protein expression patterns of Notch components (receptors Notch1–4; ligands Dll1 and Dll4, Jagged1–2; and effectors Hes1–2), and their relationship with transcription of gene markers of pluripotency and differentiation (Sox2, Oct4, Klf4, Cdx2) during mouse blastocyst development and hatching. Transcription of Notch1–2, Jagged1–2 and Hes1 was highly prevalent and dynamic along stages of development, whereas transcription of Notch3–4, Dll4 and Hes2 had a low prevalence among embryos. Transcription levels of Notch1, Notch2, Jagged2 and Hes1 correlated with each other and with those of pluripotency and differentiation genes. Gene transcription was associated to protein expression, except for Jagged2, where high transcription levels in all embryos were not translated into protein. Presence of Notch signaling activity was confirmed through nuclear NICD and Hes1 detection, and downregulation of Hes1 transcription following canonical signaling blockade with DAPT. In vitro embryo culture supplementation with Jagged1 had no effect on embryo developmental kinetics. In contrast, supplementation with Jagged2 abolished Jagged1 transcription, downregulated Cdx2 transcription and inhibited blastocyst hatching. Notch signaling blockade by DAPT downregulated transcription of Sox2, and retarded embryo hatching. Conclusion: Transcription of Notch genes showed a dynamic pattern along blastocyst development and hatching. Data confirmed Notch signaling activity, and lead to the suggestion that Notch canonical signaling may be operating through Notch1, Notch3, Jagged1 and Hes1. Embryo culture supplementation with Jagged1 and Jagged2 unveiled a possible regulatory effect between Jagged1, Cdx2 and blastocyst hatching. Overall, results indicate that a deregulation in Notch signaling, either by its over or under-activation, affects blastocyst development and hatching.
  • Genomic and phenotypic characterization of Campylobacter fetus subsp. venerealis strains
    Publication . Silva, Marta Filipa Serra da; Pereira, Ana L.; Fraqueza, M. J.; Pereira, Gonçalo; Mateus, Luisa; Lopes-da-Costa, Luís; Silva, E
    The pathogenesis mechanisms of Campylobacter fetus subsp. venerealis (Cfv), the etiologic agent of Bovine Genital Campylobacteriosis remain elusive. This study evaluated the virulence potential and biovar characteristics of Cfv isolates (n = 13) by PCR screening of putative virulencefactor (VF) genes, Multilocus Sequence Typing (MLST) analysis, antimicrobial susceptibility to tetracycline, penicillin, enrofloxacin and streptomycin testing and whole-genome sequencing (WGS; n = 5), also comparing the latter with 26 other whole-genome sequences of Cfv strains. The putative VF genes encoding type IV secretion system of Cfv (virB2-virB11/virD4) were absent in 92% of isolates, including isolates from aborted foetuses, evidencing that these VF genes are not essential for Cfv pathogenicity. The parA gene, used as a Cfv diagnostic molecular target, was detected in only 3 of 13 isolates, invalidating its use for diagnosis purposes. Three novel sequence types were identified by MLST. Although no in vitro antimicrobial resistance was detected, WGS identified antimicrobial resistance-related genes, including those encoding the multidrug efflux pumps CmeABC and YkkCD, indicating that their presence is not enough to provide antimicrobial resistance. The SNP and accessory protein families analysis segregated the Cfv and Cfv biovar intermedius (Cfvi) strains into different clusters. In conclusion, this study evidenced virulence potential and biovar characteristics of Cfv and Cfvi, which are of relevance for the control of Bovine Genital Campylobacteriosis.