Browsing by Author "Ribeiro, David M."
Now showing 1 - 10 of 11
Results Per Page
Sort Options
- Dietary Ulva lactuca and CAZyme supplementation improve serum biochemical profile and hepatic composition of weaned pigletsPublication . Ribeiro, David M.; Lopes, Paula A.; Pinto, Rui M. A.; Pestana, José M.; Costa, Mónica M.; Alfaia, Cristina M.; Mourato, Miguel; Almeida, André; Freire, João; Prates, José A. M.Ulva lactuca is a seaweed with antinutritional cell wall for monogastrics. Carbohydrate-Active enZymes (CAZymes) supplementation can potentially cause its disruption. This study evaluates four diets: Ctrl—control diet; UL—control + 7% U. lactuca (wild caught, powdered form); ULR—UL + 0.005% Rovabio® Excel AP; ULU—UL + 0.01% ulvan lyase on piglets’ haematologic and serologic profiles, hepatic lipids and minerals. White blood cells and lymphocytes reached the highest values in piglets fed UL compared to control, and to control and ULR; respectively (P < 0.05). IgG levels were boosted by seaweed incorporation compared to control (P = 0.015). The glycaemic homeostasis was assured by the seaweed inclusion. Dietary seaweed decreased serum lipids (P < 0.001), with the exception of ULU, due to HDL-cholesterol increase (P < 0.001). Cortisol was decreased in ULR and ULU (P < 0.001). No systemic inflammation was observed (P > 0.05). While hepatic n-3 PUFA increased in piglets fed with seaweed diets due to increment of beneficial 22:5n-3 and 22:6n-3 fatty acids (P < 0.05), the opposite occurred for n-6 PUFA, PUFA/SFA and n-6/n-3 ratios (P < 0.05). Hepatic pigments were unchanged (P > 0.05). ULR reduced α-tocopherol levels (P = 0.036) and increased serum potassium levels (P < 0.001) compared to control. Seaweed contributed to overcome piglets’ weaning stress, with some benefits of including CAZyme supplementation.
- Domestic animal proteomics in the 21st century: a global retrospective and viewpoint analysisPublication . Almeida, André M.; Ali, Syed Azmal; Ceciliani, Fabrizio; Eckersall, P. David; Hernandez-Castellano, Lorenzo E.; Han, Rongwei; Hodnik, Jaka J.; Jaswal, Shalini; Lippolis, John D.; McLaughlin, Mark; Miller, Ingrid; Mohanty, Ashok Kumar; Mrljak, Vladimir; Nally, Jarlath E.; Nanni, Paolo; Plowman, Jeffrey E.; Poleti, Mirele D.; Ribeiro, David M.; Rodrigues, Pedro; Roschhitzki, Bernd; Schlapbach, Ralph; Staric, Joze; Yang, Yongxin; Zachut, MayaAnimal production and health are of significant economic importance, particularly regarding the world food supply. Animal and veterinary sciences have evolved immensely in the past six decades, particularly in genetics, nutrition, housing, management and health. To address major challenges such as those posed by climate change or metabolic disorders, it is of utmost importance to use state-of-the-art research tools. Proteomics and the other post-genomic tools (transcriptomics or metabolomics) are among them. Proteomics has experienced a considerable development over the last decades. This brought developments to different scientific fields. The use and adoption of proteomics tools in animal and veterinary sciences has some limitations (database availability or access to proteomics platforms and funding). As a result, proteomics’ use by animal science researchers varies across the globe. In this viewpoint article, we focus on the developments of domestic animal proteomics over the last decade in different regions of the globe and how the researhers have coped with such challenges. In the second part of the article, we provide examples of funding, educational and laboratory establishment initiatives designed to foster the development of (animal-based) proteomics. International scientific collaboration is a definitive and key feature in the development and advancement of domestic animal proteomics
- Effect of dietary incorporation of Chlorella vulgaris and CAZyme supplementation on the hepatic proteome of finishing pigsPublication . Ribeiro, David M.; Coelho, Diogo; Osório, Hugo; Martins, Cátia; Freire, João; Almeida, João; Moreira, Olga; Almeida, André; Prates, José A.M.The combination of several factors, including an increase in world population and living standards in developing countries and world dependency on conventional crop imports drive a search for alternative feedstuffs for poultry and pig diets. This would reduce the environmental impact associated with the foreseeable increase in the demand for animal products. One of such alternatives are microalgae, a diverse group of aquatic organisms with interesting nutritional properties. Chlorella vulgaris is a green microalga with a crude protein content comparable to that of soybean meal. However, its recalcitrant cell wall prevents it from being used as a nutrient source in monogastric diets. CAZyme supplementation is a putative strategy to increase its nutritional value, aiming at disrupting the cell wall and make intracellular nutrients available for digestion. The impact of these dietary strategies on the hepatic metabolism is currently unknown. The objective of this study was to evaluate the hepatic proteome of pigs fed with 5% C. vulgaris with or without CAZyme supplementation. Microalga inclusion has affected lipid metabolism and oxidative stress. CAZyme supplementation has caused higher oxidative stress in the liver, possibly caused by the higher digestive availability and consequent hepatic oxidation of fatty acids. Significance: C. vulgaris, a microalga, is a novel feedstuff that is an alternative to conventional crops such as maize and soybean meal. Its recalcitrant cell wall may cause antinutritional effects when included in monogastric diets. This can be prevented by using exogenous enzyme supplementation, namely CAZymes, aimed at degrading this cell wall during digestion. Liver proteomics was used to identify the impact of these diets in finishing pig metabolism
- Effect of Laminaria digitata dietary inclusion and CAZyme supplementation on blood cells, serum metabolites and hepatic lipids and minerals of weaned pigletsPublication . Ribeiro, David M.; Pinto, Rui M. A.; Lopes, Paula A.; Pestana, José M.; Alfaia, Cristina M.; Costa, Mónica M.; Carvalho, Daniela F. P.; Mourato, Miguel; Almeida, André; Freire, João P. B.; Prates, José A. M.Seaweeds, such as Laminaria digitata, are a sustainable alternative to conventional feedstuffs for weaned piglet diets, improving their health and mitigating environmental impacts. L. digitata has a complex cell wall that can be difficult for monogastrics to digest. However, carbohydrate-active enzymes (CAZymes) such as Rovabio® Excel AP and alginate lyase can help break down these polysaccharides and render intracellular nutrients more accessible. This study aimed to evaluate the impact of 10% L. digitata feed inclusion and CAZyme supplementation on piglet blood cells, serum metabolites, liver lipid and mineral profiles. Forty weaned piglets were randomly assigned to one of four diets (n = 10 each): a control diet, 10% L. digitata (LA), 10% L. digitata + 0.005% Rovabio® Excel AP (LAR), and 10% L. digitata + 0.01% alginate lyase (LAL). After two weeks of trial, animals were slaughtered and liver and blood serum samples taken for analysis. The results showed that the LA and LAL diets increased blood lymphocytes, IgG and IgM, and decreased serum lipids, improving both cellular and humoral immune response and cardiovascular health. Dietary CAZymes reversed the anti-inflammatory and hematopoietic effects. Additionally, cortisol levels were reduced with seaweed inclusion compared to the control diet (P < 0.001). In the liver, total n-3 PUFA and n-6/n-3 ratio were increased and decreased, respectively, due to eicosapentaenoic acid and α-linolenic acid accumulation (P < 0.001). However, total liver mineral content was incorporated to a lesser extent with the combined seaweed and enzyme diets (P < 0.001), potentially indicating a negative effect on mineral bioavailability. Overall, results suggest that a 10% L. digitata inclusion can effectively improve piglet health by reducing stress during weaning, without the need for dietary CAZymes.
- Effects of Chlorella vulgaris as a feed ingredient on the quality and nutritional value of weaned piglets' meatPublication . Martins, Cátia F.; Pestana, José M.; Alfaia, Cristina M.; Costa, Mónica; Ribeiro, David M.; Coelho, Diogo; Lopes, Paula A.; Almeida, André M.; Freire, João; Prates, José A.M.Chlorella vulgaris (CH) is usually considered a feed supplement in pig nutrition, and its use as an ingredient is poorly studied. Among many interesting characteristics, this microalga has high protein levels and can be a putative alternative for soybean meal. Our aim was to study the effect of a 5% CH incorporation in the diet, individually or combined with two carbohydrases, on meat quality traits and nutritional value. Forty-four post-weaned male piglets individually housed, with an initial live weight of 11.2 0.46 kg, were randomly distributed into four experimental groups: control (n = 11, without CH) and three groups fed with 5% CH incorporation, plain (n = 10), with 0.005% Rovabio® Excel AP (n = 10), and with 0.01% of a pre-selected four-CAZyme mixture (n = 11). After two weeks of trial, piglets were slaughtered and longissimus lumborum collected. CH had no effect on piglets’ growth performance. In turn, incorporation of CH improved the nutritional value of meat by increasing total carotenoids and n-3 PUFA content, thus contributing to a more positive n-6/n-3 fatty acid ratio. The supplementation with Rovabio® benefited tenderness and increased overall acceptability of pork. Our results show beyond doubt the viability of the utilization of this microalga as a feed ingredient for swine production
- Influence of dietary Spirulina inclusion and lysozyme supplementation on the longissimus lumborum muscle proteome of newly weaned pigletsPublication . Ribeiro, David M.; Martins, Cátia F.; Kules, Josipa; Horvatic, Anita; Guillemin, Nicolas; Freire, João; Eckersall, P. David; Almeida, André M.; Prates, José A.M.Arthrospira platensis (Spirulina) is a microalga with a high content of crude protein. Its recalcitrant cell wall limits the accessibility of the animal endogenous enzymes to its intracellular nutrients. Enzymatic supplementation aiming to degrade cell walls could benefit microalgae digestibility. The objective of this study was to evaluate the impact of dietary Spirulina and lysozyme supplementation over the muscle proteome of piglets during the post-weaning stage. Thirty piglets were randomly distributed among three diets: control (no microalga), SP (10% Spirulina) and SP+L (10% Spirulina + 0.01% lysozyme). After 4 weeks, they were sacrificed and samples of the longissimus lumborum muscle were taken. The muscle proteome was analysed using a Tandem Mass Tag (TMT)-based quantitative approach. A total of 832 proteins were identified. Three comparisons were computed: SP vs Ctrl, SP+L vs Ctrl and SP+L vs SP. They had ten, four and twelve differentially abundant proteins. Glycogen metabolism and nutrient reserves utilization are seemingly increased in the SP piglets. Structural muscle protein synthesis increased, causing higher energy requirements in SP+L piglets. Our results demonstrate the usefulness of proteomics to disclose the effect of dietary microalgae, whilst unveiling putative mechanisms derived from lysozyme supplementation. Data are available via ProteomeXchange with identifier PXD024083
- Influence of dietary supplementation with an amino acid mixture on inflammatory markers, immune status and serum proteome in LPS-challenged weaned pigletsPublication . Prates, José A.M.; Freire, João; Almeida, André M.; Martins, Cátia; Ribeiro, David M.; Osório, Hugo; Pinho, Mário A.S.In order to investigate the effect of a dietary amino acid mixture supplementation in lipopolysaccharide (LPS)-challenged weaned piglets, twenty-seven 28-day-old (8.2 1.0 kg) newly weaned piglets were randomly allocated to one of three experimental treatments for five weeks. Diet 1: a CTRL treatment. Diet 2: an LPS treatment, where piglets were intraperitoneally administered LPS (25 g/kg) on day 7. Diet 3: an LPS+MIX treatment, where piglets were intraperitoneally administered LPS on day 7 and fed a diet supplemented with a mixture of 0.3% of arginine, branchedchain amino acids (leucine, valine, and isoleucine), and cystine (MIX). Blood samples were drawn on day 10 and day 35, and serum was analysed for selected chemical parameters and proteomics. The LPS and LPS+MIX groups exhibited an increase in haptoglobin concentrations on day 10. The LPS group showed an increased cortisol concentration, while this concentration was reduced in the LPS+MIX group compared to the control group. Similarly, the LPS+MIX group showed a decreased haptoglobin concentration on day 35 compared to the two other groups. Immunoglobulin concentrations were affected by treatments. Indeed, on day 10, the concentrations of IgG and IgM were decreased by the LPS challenge, as illustrated by the lower concentrations of these two immunoglobulins in the LPS group compared to the control group. In addition, the supplementation with the amino acid mixture in the LPS+MIX further decreased IgG and increased IgM concentrations compared to the LPS group. Although a proteomics approach did not reveal important alterations in the protein profile in response to treatments, LPS-challenged piglets had an increase in proteins linked to the immune response, when compared to piglets supplemented with the amino acid mixture. Overall, data indicate that LPS-challenged piglets supplemented with this amino acid mixture are more protected against the detrimental effects of LPS
- Influence of dietary supplementation with an amino acid mixture on inflammatory markers, immune status and serum proteome in LPS-Challenged Weaned PigletsPublication . Prates, José A.M; Freire, João; Almeida, André; Martins, Cátia Falcão; Ribeiro, David M.; Osorio, Hugo; Pinho, Mário; Lopes, Paula Alexandra; Correia, Jorge Manuel de Jesus; Pinto, Rui M. A.In order to investigate the effect of a dietary amino acid mixture supplementation in lipopolysaccharide (LPS)-challenged weaned piglets, twenty-seven 28-day-old (8.2 ± 1.0 kg) newly weaned piglets were randomly allocated to one of three experimental treatments for five weeks. Diet 1: a CTRL treatment. Diet 2: an LPS treatment, where piglets were intraperitoneally administered LPS (25 μg/kg) on day 7. Diet 3: an LPS+MIX treatment, where piglets were intraperitoneally administered LPS on day 7 and fed a diet supplemented with a mixture of 0.3% of arginine, branched-chain amino acids (leucine, valine, and isoleucine), and cystine (MIX). Blood samples were drawn on day 10 and day 35, and serum was analysed for selected chemical parameters and proteomics. The LPS and LPS+MIX groups exhibited an increase in haptoglobin concentrations on day 10. The LPS group showed an increased cortisol concentration, while this concentration was reduced in the LPS+MIX group compared to the control group. Similarly, the LPS+MIX group showed a decreased haptoglobin concentration on day 35 compared to the two other groups. Immunoglobulin concentrations were affected by treatments. Indeed, on day 10, the concentrations of IgG and IgM were decreased by the LPS challenge, as illustrated by the lower concentrations of these two immunoglobulins in the LPS group compared to the control group. In addition, the supplementation with the amino acid mixture in the LPS+MIX further decreased IgG and increased IgM concentrations compared to the LPS group. Although a proteomics approach did not reveal important alterations in the protein profile in response to treatments, LPS-challenged piglets had an increase in proteins linked to the immune response, when compared to piglets supplemented with the amino acid mixture. Overall, data indicate that LPS-challenged piglets supplemented with this amino acid mixture are more protected against the detrimental effects of LPS.
- Infuence of Chlorella vulgaris on growth, digestibility and gut morphology and microbiota of weaned pigletPublication . Martins, Cátia Falcão; Trevisi, Paolo; Coelho, Diogo F.; Correa, Federico; Ribeiro, David M.; Pinho, Mario; Pestana, Jose M.; Mourato, Miguel P.; Almeida, André; Fontes, Carlos M.G.A.; Freire, Joao P. B.; Prates, José A.MThe purpose of this study was to evaluate the impact of Chlorella vulgaris (5% in the diet), supplemented or not with two exogenous carbohydrase mixtures on piglets’ performance, nutrient digestibility and gut morphology, fermentation products and microbiota. Forty-four male piglets weaned at 28 days of age, with 11.2 ± 0.46 kg of live weight, were used and assigned to 1 of 4 dietary treatments: cereal and soybean meal based-diet (control, n = 11), control diet with 5% of C. vulgaris (CH, n = 10), CH diet supplemented with 0.005% of Rovabio® Excel AP (CH + R, n = 10) and CH diet supplemented with 0.01% of a recombinant 4-carbohydrase mixture (CH + M, n = 11). Growth performance was not changed by the of C. vulgaris inclusion during 21 days of trial. However, total tract apparent digestibility of nutritional fractions was negatively impacted by the inclusion. In addition, the viscosity of duodenum plus jejunum contents slightly increased in all groups fed with the microalga. In contrast, dietary microalga increased duodenum villus height and promoted a healthier gut microbiota, with higher abundance of some specific bacterial taxa (Colidextribacter, Oscillospira and Lactobacillus). This study indicates that the dietary inclusion of 5% C. vulgaris improves piglets’ gut health without impairing performance. Data also indicate that C. vulgaris reduces nutrient digestibility but promotes compensatory developments of gut mucosa and prebiotic effects. Dietary supplementation with exogenous carbohydrases does not seem to be necessary for this inclusion level. Therefore, the incorporation of CH as a sustainable feed ingredient in piglets’ nutrition is a viable alternative approach.
- Using microalgae as a sustainable feed resource to enhance quality and nutritional value of pork and poultry meatPublication . Martins, Cátia F.; Ribeiro, David M.; Costa, Mónica; Coelho, Diogo; Alfaia, Cristina M.; Lordelo, Madalena; Almeida, André; Freire, João; Prates, José A.M.Cereal grains and soybean meal are the main feedstuffs used in swine and poultry feeding, two of the most consumed meats and of key relevance to food security worldwide. Such crops are grown mostly in North and South America and transported over large distances creating sustainability concerns and, furthermore, are in direct competition with human nutrition. Alternatives to these ingredients are, thus, a pressing need to ensure the sustainability of swine and poultry production. Microalgae seem to be a viable alternative due to their interesting nutritional composition. The use of different microalgae in monogastric feeding has been addressed by different researchers over the last decade, particularly their use as a supplement, whilst their use as a feed ingredient has been comparatively less studied. In addition, the high production costs of microalgae are a barrier and prevent higher dietary inclusion. Studies on the effect of microalgae on meat quality refer mostly to fatty acid composition, using these either as a functional ingredient or as a feedstuff. Within such a context and in line with such a rationale, in this review we address the current research on the topic of the use of microalgae in poultry and swine nutrition, particularly aspects concerning pork and poultry meat quality and nutritional traits