Loading...
16 results
Search Results
Now showing 1 - 10 of 16
- Unzippers, resolvers and sensors: a structural and functional biochemistry tale of RNA helicasesPublication . Leitão, Ana; Costa, Marina C.; Enguita, Francisco J.The centrality of RNA within the biological world is an irrefutable fact that currently attracts increasing attention from the scientific community. The panoply of functional RNAs requires the existence of specific biological caretakers, RNA helicases, devoted to maintain the proper folding of those molecules, resolving unstable structures. However, evolution has taken advantage of the specific position and characteristics of RNA helicases to develop new functions for these proteins, which are at the interface of the basic processes for transference of information from DNA to proteins. RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Structural biology studies during the last decade, founded in X-ray crystallography, have characterized in detail several RNA-helicases. This comprehensive review summarizes the structural knowledge accumulated in the last two decades within this family of proteins, with special emphasis on the structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes.
- The circulating non-coding RNA landscape for biomarker research : lessons and prospects from cardiovascular diseasesPublication . Stępień, Ewa; Costa, Marina C.; Kurc, Szczepan; Drożdż, Anna; Cortez-Dias, Nuno; Enguita, Francisco J.Pervasive transcription of the human genome is responsible for the production of a myriad of non-coding RNA molecules (ncRNAs) some of them with regulatory functions. The pivotal role of ncRNAs in cardiovascular biology has been unveiled in the last decade, starting from the characterization of the involvement of micro-RNAs in cardiovascular development and function, and followed by the use of circulating ncRNAs as biomarkers of cardiovascular diseases. The human non-coding secretome is composed by several RNA species that circulate in body fluids and could be used as biomarkers for diagnosis and outcome prediction. In cardiovascular diseases, secreted ncRNAs have been described as biomarkers of several conditions including myocardial infarction, cardiac failure, and atrial fibrillation. Among circulating ncRNAs, micro-RNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been proposed as biomarkers in different cardiovascular diseases. In comparison with standard biomarkers, the biochemical nature of ncRNAs offers better stability and flexible storage conditions of the samples, and increased sensitivity and specificity. In this review we describe the current trends and future prospects of the use of the ncRNA secretome components as biomarkers of cardiovascular diseases, including the opening questions related with their secretion mechanisms and regulatory actions.
- Transcriptomic crosstalk between fungal invasive pathogens and their host cells: opportunities and challenges for next-generation sequencing methodsPublication . Enguita, Francisco J.; Costa, Marina C.; Fusco-Almeida, Ana; Mendes-Giannini, Maria; Leitão, AnaFungal invasive infections are an increasing health problem. The intrinsic complexity of pathogenic fungi and the unmet clinical need for new and more effective treatments requires a detailed knowledge of the infection process. During infection, fungal pathogens are able to trigger a specific transcriptional program in their host cells. The detailed knowledge of this transcriptional program will allow for a better understanding of the infection process and consequently will help in the future design of more efficient therapeutic strategies. Simultaneous transcriptomic studies of pathogen and host by high-throughput sequencing (dual RNA-seq) is an unbiased protocol to understand the intricate regulatory networks underlying the infectious process. This protocol is starting to be applied to the study of the interactions between fungal pathogens and their hosts. To date, our knowledge of the molecular basis of infection for fungal pathogens is still very limited, and the putative role of regulatory players such as non-coding RNAs or epigenetic factors remains elusive. The wider application of high-throughput transcriptomics in the near future will help to understand the fungal mechanisms for colonization and survival, as well as to characterize the molecular responses of the host cell against a fungal infection.
- Circulating miRNAs are associated with the systemic extent of atherosclerosis : novel observations for miR-27b and miR-146Publication . Pereira da Silva, Tiago; Napoleão, Patricia; Costa, Marina C.; Gabriel, André F.; Selas, Mafalda; Silva, Filipa; Enguita, Francisco J.; Ferreira, Rui Cruz; Carmo, Miguel MotaThe mechanisms that regulate the systemic extent of atherosclerosis are not fully understood. We investigated whether the expression of circulating miRNAs is associated with the extent of stable atherosclerosis to a single territory or multiple territories (polyvascular) and with the severity of atherosclerosis in each territory. Ninety-four participants were prospectively recruited and divided into five age- and sex-matched groups: presenting no atherosclerosis, isolated coronary atherosclerosis, coronary and lower extremity atherosclerosis, coronary and carotid atherosclerosis, and atherosclerosis of the coronary, lower extremity, and carotid territories. The expression of six circulating miRNAs with distinct biological roles was assessed. The expression of miR-27b and miR-146 differed across groups (p < 0.05), showing a decrease in the presence of atherosclerosis, particularly in the three territories. miR-27b and miR-146 expression decreased in association with a higher severity of coronary, lower extremity, and carotid atherosclerosis. Polyvascular atherosclerosis involving the three territories was independently associated with a decreased miR-27b and miR-146 expression. Both miRNAs presented an area under the curve of ≥0.75 for predicting polyvascular atherosclerosis involving the three territories. To conclude, miR-27b and miR-146 were associated with the presence of severe polyvascular atherosclerosis and with the atherosclerosis severity in each territory. Both are potential biomarkers of severe systemic atherosclerosis.
- Interspecies communication in Holobionts by non-coding RNA exchangePublication . Leitão, Ana Lúcia; Costa, Marina C.; Gabriel, André F.; Enguita, Francisco J.Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.
- Genetic characterization of the dihydrofolate reductase gene of Pneumocystis jirovecii isolates from PortugalPublication . Costa, Marina C.; Esteves, Francisco; Antunes, Francisco; Matos, OlgaObjectives: The aim of the present study was to evaluate the genetic variation of Pneumocystis jirovecii dihydrofolate reductase (DHFR) gene in an immunocompromised Portuguese population and to investigate the possible association between DHFR genotypes and P. jirovecii pneumonia (PcP) prophylaxis with co-trimoxazole. Methods: One hundred and thirty-eight P. jirovecii isolates were submitted to DHFR genetic characterization by PCR and sequencing. Results: In the studied population, 72.7% of the patients presented sequences identical to the wild-type sequence of the P. jirovecii DHFR gene and 27.3% presented point substitutions. A total of nine substitution sites were identified; four synonymous substitutions at nucleotide positions 201, 272, 312 and 381 were detected in 31 patients. Five non-synonymous substitutions were observed, leading to the DHFR mutations Leu-13→Ser, Asn-23→Ser, Ser-31→Phe, Met-52→Leu and Ala-67→Val. With the exception of the polymorphism at position 312 and the mutation at codon 52, all polymorphisms were reported in this study for the first time. Conclusions: Our results suggest that DHFR gene polymorphisms are frequent in the Portuguese immunocompromised population but do not seem to be associated with PcP prophylaxis failure (P = 0.748 and P = 0.730).
- Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesisPublication . Ribeiro-Rodrigues, Teresa M.; Laundos, Tiago L.; Pereira-Carvalho, Rita; Batista-Almeida, Daniela; Pereira, Ricardo; Coelho-Santos, Vanessa; Silva, Ana P.; Fernandes, Rosa; Zuzarte, Monica; Enguita, Francisco J.; Costa, Marina C.; Pinto-do-Ó, Perpetua; Pinto, Marta T.; Gouveia, Pedro; Ferreira, Lino; Mason, Justin C.; Pereira, Paulo; Kwak, Brenda R.; Nascimento, Diana S.; Girão, HenriqueAims: Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide and results from an obstruction in the blood supply to a region of the heart. In an attempt to replenish oxygen and nutrients to the deprived area, affected cells release signals to promote the development of new vessels and confer protection against MI. However, the mechanisms underlying the growth of new vessels in an ischaemic scenario remain poorly understood. Here, we show that cardiomyocytes subjected to ischaemia release exosomes that elicit an angiogenic response of endothelial cells (ECs). Methods and results: Exosomes secreted by H9c2 myocardial cells and primary cardiomyocytes, cultured either in control or ischaemic conditions were isolated and added to ECs. We show that ischaemic exosomes, in comparison with control exosomes, confer protection against oxidative-induced lesion, promote proliferation, and sprouting of ECs, stimulate the formation of capillary-like structures and strengthen adhesion complexes and barrier properties. Moreover, ischaemic exosomes display higher levels of metalloproteases (MMP) and promote the secretion of MMP by ECs. We demonstrate that miR-222 and miR-143, the relatively most abundant miRs in ischaemic exosomes, partially recapitulate the angiogenic effect of exosomes. Additionally, we show that ischaemic exosomes stimulate the formation of new functional vessels in vivo using in ovo and Matrigel plug assays. Finally, we demonstrate that intramyocardial delivery of ischaemic exosomes improves neovascularization following MI. Conclusions: This study establishes that exosomes secreted by cardiomyocytes under ischaemic conditions promote heart angiogenesis, which may pave the way towards the development of add-on therapies to enhance myocardial blood supply.
- Effects of neonatal exposure to methoxychlor on corpus luteum in gilts : a transcriptomic analysisPublication . Witek, Patrycja; Enguita, Francisco J.; Grzesiak, Malgorzata; Costa, Marina C.; Gabriel, André F.; Koziorowski, Marek; Slomczynska, Maria; Knapczyk‐Stwora, KatarzynaThis study investigated the effects of neonatal exposure to methoxychlor (MXC), a synthetic organochlorine used as an insecticide with estrogenic, antiestrogenic, and antiandrogenic activities, on luteal function in pigs. Piglets were injected subcutaneously with MXC (20 μg/kg body weight) or corn oil (control) between postnatal Days 1 and 10 (N = 5/group). Corpora lutea from sexually mature gilts were examined for luteal steroid and prostaglandin concentrations and processed for total RNA isolation and subsequent RNA sequencing. Intra-luteal concentrations of androstenedione and prostaglandin E2 were greater, while that of estrone was lower when compared to control. Fifty-three differentially expressed (DE) microRNAS (miRNAs) (p-adjusted <.05 and log2(fold change) ≥.5) and 359 DE genes (p-adjusted <.05 and log2(fold change) ≥1) were identified in luteal tissue in response to neonatal MXC treatment. MXC was found to affect the expression of genes related to lipogenesis, steroidogenesis, membrane transport, immune response, cell signaling and adhesion. These results suggest an earlier onset of structural luteolysis in pigs caused by MXC actions in neonates. Since negative correlation analysis showed the potential interactions of miRNAs with specific messenger RNAs, we propose that these miRNAs are potential mediators of the long-term MXC effect on the CL function in pigs.
- Cigarette smoking, miR-27b downregulation, and peripheral artery disease : insights into the mechanisms of smoking toxicityPublication . Pereira-da-Silva, Tiago; Napoleão, Patricia; Costa, Marina C.; Gabriel, André F.; Selas, Mafalda; Silva, Filipa; Enguita, Francisco J.; Ferreira, Rui Cruz; Carmo, Miguel MotaCigarette smoking is a risk factor for the development of peripheral artery disease (PAD), although the proatherosclerotic mediators of cigarette smoking are not entirely known. We explored whether circulating microRNAs (miRNAs) are dysregulated in cigarette smokers and associated with the presence of PAD. Ninety-four participants were recruited, including 58 individuals without and 36 with PAD, 51 never smokers, 28 prior smokers, and 15 active smokers. The relative expression of six circulating miRNAs with distinct biological roles (miR-21, miR-27b, miR-29a, miR-126, miR-146, and miR-218) was assessed. Cigarette smoking was associated with the presence of PAD in multivariate analysis. Active smokers, but not prior smokers, presented miR-27b downregulation and higher leukocyte, neutrophil, and lymphocyte counts; miR-27b expression levels were independently associated with active smoking. Considering the metabolic and/or inflammatory abnormalities induced by cigarette smoking, miR-27b was independently associated with the presence of PAD and downregulated in patients with more extensive PAD. In conclusion, the atheroprotective miR-27b was downregulated in active smokers, but not in prior smokers, and miR-27b expression was independently associated with the presence of PAD. These unreported data suggest that the proatherogenic properties of cigarette smoking are mediated by a downregulation of miR-27b, which may be attenuated by smoking cessation.
- Applications of genome editing by programmable nucleases to the metabolic engineering of secondary metabolitesPublication . Leitão, Ana Lúcia; Costa, Marina C.; Enguita, Francisco J.Genome engineering is a branch of modern biotechnology composed of a cohort of protocols designed to construct and modify a genotype with the main objective of giving rise to a desired phenotype. Conceptually, genome engineering is based on the so called genome editing technologies, a group of genetic techniques that allow either to delete or to insert genetic information in a particular genomic locus. Ten years ago, genome editing tools were limited to virus-driven integration and homologous DNA recombination. However, nowadays the uprising of programmable nucleases is rapidly changing this paradigm. There are two main families of modern tools for genome editing depending on the molecule that controls the specificity of the system and drives the editor machinery to its place of action. Enzymes such as Zn-finger and TALEN nucleases are protein-driven genome editors; while CRISPR system is a nucleic acid-guided editing system. Genome editing techniques are still not widely applied for the design of new compounds with pharmacological activity, but they are starting to be considered as promising tools for rational genome manipulation in biotechnology applications. In this review we will discuss the potential applications of programmable nucleases for the metabolic engineering of secondary metabolites with biological activity.