Browsing by Author "Bardají, Eduard"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Antifungal and anti-biofilm activity of designed derivatives from kyotorphinPublication . Martins de Andrade, Vitor; Bardají, Eduard; Heras, Montserrat; Ramu, Vasanthakumar G.; Junqueira, Juliana Campos; Diane dos Santos, Jéssica; Castanho, Miguel A. R. B.; Conceição, KatiaKyotorphin (KTP, l-tyrosyl-l-arginine) is an endogenous analgesic neuropeptide first isolated from bovine brain in 1979. Previous studies have shown that kyotorphins possess anti-inflammatory and antimicrobial activity. Six kyotorphins—KTP-NH2, KTP–NH2–DL, ibuprofen-conjugated KTP (IbKTP), IbKTP-NH2, N-methyl-D-Tyr-L-Arg, and N-methyl-L-Tyr-D-Arg—were designed and synthesized to improve lipophilicity and resistance to enzymatic degradation. This study assessed the antimicrobial and antibiofilm activity of these peptides. The antifungal activity of kyotorphins was determined in representative strains of Candida species, including Candida albicans ATCC 10231, Candida krusei ATCC 6258, and six clinical isolates—Candida dubliniensis 19-S, Candida glabrata 217-S, Candida lusitaniae 14-S, Candida novergensis 51-S, Candida parapsilosis 63, and Candida tropicalis 140-S—obtained from the oral cavity of HIV-positive patients. The peptides were synthesized by standard solution or solid-phase synthesis, purified by RP-HPLC (purity >95 %), and characterized by nuclear magnetic resonance. The results of the broth microdilution assay and scanning electron microscopy showed that IbKTP-NH2 presented significant antifungal activity against Candida strains and antibiofilm activity against the clinical isolates. The absence of toxic activity and survival after infection was assessed after injecting the peptide in larvae of Galleria mellonella as experimental infection model. Furthermore, IbKTP-NH2 had strong antimicrobial activity against multidrug-resistant bacteria and fungi and was not toxic to G. mellonella larvae up to a concentration of 500 mM. These results suggest that IbKTP-NH2, in addition to its known effect on cell membranes, can elicit a cellular immune response and, therefore, is promising for biomedical application.
- Escherichia coli cell surface perturbation and disruption induced by antimicrobial peptides BP100 and pepRPublication . Alves, Carla S.; Melo, Manuel N.; Franquelim, Henri G.; Ferre, Rafael; Planas, Marta; Feliu, Feliu; Bardají, Eduard; Kowalczyk, Wioleta; Andreu, David; Santos, Nuno C.; Fernandes, Miguel X.; Castanho, Miguel A. R. B.The potential of antimicrobial peptides (AMPs) as an alternative to conventional therapies is well recognized. Insights into the biological and biophysical properties of AMPs are thus key to understanding their mode of action. In this study, the mechanisms adopted by two AMPs in disrupting the Gram-negative Escherichia coli bacterial envelope were explored. BP100 is a short cecropin A-melittin hybrid peptide known to inhibit the growth of phytopathogenic Gram-negative bacteria. pepR, on the other hand, is a novel AMP derived from the dengue virus capsid protein. Both BP100 and pepR were found to inhibit the growth of E. coli at micromolar concentrations. Zeta potential measurements of E. coli incubated with increasing peptide concentrations allowed for the establishment of a correlation between the minimal inhibitory concentration (MIC) of each AMP and membrane surface charge neutralization. While a neutralization-mediated killing mechanism adopted by either AMPis not necessarily implied, the hypothesis that surface neutralization occurs close to MIC values was confirmed. Atomic force microscopy (AFM) was then employed to visualize the structural effect of the interaction of each AMP with the E. coli cell envelope. At their MICs, BP100 and pepR progressively destroyed the bacterial envelope, with extensive damage already occurring 2 h after peptide addition to the bacteria. A similar effect was observed for each AMP in the concentration-dependent studies. At peptide concentrations below MIC values, only minor disruptions of the bacterial surface occurred.
- Neuropeptide kyotorphin impacts on lipopolysaccharide-induced glucocorticoid-mediated inflammatory response : a molecular link to nociception, neuroprotection, and anti-inflammatory actionPublication . Perazzo, Juliana; Lima, Carla; Heras, Montserrat; Bardají, Eduard; Ferreira, Mônica Lopes; Castanho, Miguel A. R. B.Neuropeptide kyotorphin (KTP) is a potent analgesic if administered directly into the brain. In contrast, KTP-amide (KTP-NH2) is analgesic, neuroprotective, and anti-inflammatory following systemic administration, albeit its mechanism of action is unknown. The aim of this study was to shed light on the mechanism of action of KTP-NH2 at the molecular level. KTP-NH2 does not inhibit the enkephalinases angiotensin-converting-enzyme and dipeptidyl-peptidase 3. Intravital microscopy showed that KTP-NH2 decreased the number of rolling leukocytes in a mouse model of inflammation induced by lipopolysaccharide (LPS). Pretreatment with metyrapone abrogated the action of KTP-NH2. Interestingly, stimulating rolling leukocytes using CXCL-1 is also counteracted by the KTP-NH2, but this effect is not abrogated by metyrapone. We conclude that KTP-NH2 has dual action: a glucocorticoid-mediated action, which is dominant in the full-fledged LPS-induced inflammation model, and a glucocorticoid-independent mechanism, which is predominant in models in which leukocyte rolling is stimulated but inflammation is not totally developed
- Synergistic effects of the membrane actions of cecropin-melittin antimicrobial hybrid peptide BP100Publication . Ferre, Rafael; Melo, Manuel N.; Correia, Ana D.; Feliu, Lidia; Bardají, Eduard; Planas, Marta; Castanho, Miguel A. R. B.BP100 (KKLFKKILKYL-NH2) is a short cecropin A-melittin hybrid peptide, obtained through a combinatorial chemistry approach, which is highly effective in inhibiting both the in vitro and in vivo growth of economically important plant pathogenic Gram-negatives. The intrinsic Tyr fluorescence of BP100 was taken advantage of to study the peptide’s binding affinity and damaging effect on phospholipid bilayers modeling the bacterial and mammalian cytoplasmic membranes. In vitro cytotoxic effects of this peptide were also studied on mammalian fibroblast cells. Results show a stronger selectivity of BP100 toward anionic bacterial membrane models as indicated by the high obtained partition constants, one order of magnitude greater than for the neutral mammalian membrane models. For the anionic systems, membrane saturation was observed at high peptide/lipid ratios and found to be related with BP100-induced vesicle permeabilization, membrane electroneutrality, and vesicle aggregation. Occurrence of BP100 translocation was unequivocally detected at both high and low peptide/lipid ratios using a novel and extremely simple method. Moreover, cytotoxicity against mammalian models was reached at a concentration considerably higher than the minimum inhibitory concentration. Our findings unravel the relationships among the closely coupled processes of charge neutralization, permeabilization, and translocation in the mechanism of action of antimicrobial peptides.
- Temperature‐dependent re‐alignment of the short multifunctional peptide BP100 in membranes revealed by solid‐state NMR spectroscopy and molecular dynamics simulationsPublication . Strandberg, Erik; Wadhwani, Parvesh; Bürck, Jochen; Anders, Patrick; Mink, Christian; van den Berg, Jonas; Ciriello, Raffaele A. M.; Melo, Manuel N.; Castanho, Miguel A. R. B.; Bardají, Eduard; Ulmschneider, Jakob P.; Ulrich, Anne S.BP100 is a cationic undecamer peptide with antimicrobial and cell-penetrating activities. The orientation of this amphiphilic α-helix in lipid bilayers was examined under numerous conditions using solid-state 19F, 15N and 2H NMR. At high temperatures in saturated phosphatidylcholine lipids, BP100 lies flat on the membrane surface, as expected. Upon lowering the temperature towards the lipid phase transition, the helix is found to flip into an upright transmembrane orientation. In thin bilayers, this inserted state was stable at low peptide concentration, but thicker membranes required higher peptide concentrations. In the presence of lysolipids, the inserted state prevailed even at high temperature. Molecular dynamics simulations suggest that BP100 monomer insertion can be stabilized by snorkeling lysine side chains. These results demonstrate that even a very short helix like BP100 can span (and thereby penetrate through) a cellular membrane under suitable conditions.
