Logo do repositório
 
A carregar...
Miniatura
Publicação

Combining Multiple Approaches to Predict the Degree of Nativeness

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
11208.pdf163.31 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Automatic speaker nativeness assessment has multiple applications, such as second language learning and IVR systems. In this paper we view this as a regression problem, since the available labels are on a continuous scale. Multiple approaches were applied, such as phonotactic models, i-vectors, and goodness of pronunciation, covering both segmental and suprasegmental features. Different phonotactic models were adopted, either trained with the challenge data, or using additional multilingual data from other domains. The obtained values were later combined in multiple ways and fed to a support vector machine regressor. Results on the test set surpass the provided baseline and are in line with the results obtained on the remaining sets. This suggests that our models generalize well to other datasets

Descrição

Palavras-chave

Nativeness Phonotactics GOP Prosody

Contexto Educativo

Citação

Ribeiro, E., Ferreira, J., Olcoz, J., Abad, A., Moniz, H., Batista, F. & Trancoso, I. (2015) "Combining Multiple Approaches to Predict the Degree of Nativeness", in Interspeech 2015, Dresden, Germany.

Projetos de investigação

Projeto de investigaçãoVer mais
Projeto de investigaçãoVer mais
Projeto de investigaçãoVer mais

Unidades organizacionais

Fascículo

Editora

Technische Universität Berlin

Licença CC