Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Antibiotic resistance and virulence profiles of Gram-Negative bacteria isolated from loggerhead sea turtles (Caretta caretta) of the Island of Maio, Cape Verde
Publication . Fernandes, Matilde; Grilo, Miguel; Cunha, Eva; Carneiro, Carla; Tavares, Luis; Patino-Martinez, Juan; Oliveira, Manuela
Previous studies revealed high levels of antimicrobial resistance (AMR) in loggerhead sea turtles (Caretta caretta), describing this species as prime reservoir of antimicrobial-resistant bacteria. This study aimed to characterise, for the first time, the AMR and virulence profiles of Gram-negative bacteria isolated from 33 nesting loggerhead turtles of the island of Maio, Cape Verde. Cloacal, oral, and egg content swab samples (n = 99) were collected and analysed using conventional bacteriological techniques. Shewanella putrefaciens, Morganella morganii, and Vibrio alginolyticus were isolated from the samples under study. The isolates obtained from this loggerhead subpopulation (North-East Atlantic) revealed lower levels of AMR, compared with the results of studies performed in other subpopulations (e.g., Mediterranean). However, the detection of resistance to carbapenems and multiple antimicrobial resistance indices higher than 0.20, raises concern about the potential association of these animals to points of high antimicrobial exposure. Furthermore, virulence phenotypic characterisation revealed that the isolates presented complex virulence profiles, including the ability to produce biofilms. Finally, due to their pathogenic potential, and considering the evidence of illegal consumption of turtle-related products on the island of Maio, the identified bacteria may represent a significant threat to public health.
Influence of the dental topical application of a nisin-biogel in the oral microbiome of dogs: a pilot study
Publication . Cunha, Eva; Valente, Sara; Nascimento, Mariana; Pereira, Marcelo; Tavares, Luis; Dias, Ricardo; Oliveira, Manuela
Periodontal disease (PD) is one of the most widespread inflammatory diseases in dogs. This disease is initiated by a polymicrobial biofilm in the teeth surface (dental plaque), leading to a local inflammatory response, with gingivitis and/or several degrees of periodontitis. For instance, the prevention of bacterial dental plaque formation and its removal are essential steps in PD control. Recent research revealed that the antimicrobial peptide nisin incorporated in the delivery system guar gum (biogel) can inhibit and eradicate bacteria from canine dental plaque, being a promising compound for prevention of PD onset in dogs. However, no information is available regarding its effect on the dog's oral microbiome. In this pilot study, the influence of the nisin-biogel on the diversity of canine oral microbiome was evaluated using next generation sequencing (NGS), aiming to access the viability of nisin-biogel to be used in long-term experiment in dogs. Composite toothbrushing samples of the supragingival plaque from two dogs were collected at three timepoints: T1-before any application of the nisin-biogel to the animals' teeth surface; T2-one hour after one application of the nisin-biogel; and T3-one hour after a total of three applications of the nisin-biogel, each 48 hours. After that, microbial profiling was performed by NGS of the V3V4 16s rRNA region. After only one application of the nisin-biogel to the oral cavity of dogs, a statistically significant reduction in microbial diversity was observed (T2) as well as a reduction of some bacterial species potentially related with distinct stages of PD, when compared with samples collected before any application (T1). However, after a total of three nisin-biogel applications (T3), a recovery of the microbial diversity was detected. In conclusion, the nisin-biogel may influence the canine oral microbiome. A reduction in some bacterial species potentially related with distinct stages of PD was observed. This pilot study will help to design a controlled in vivo clinical trial to evaluate nisin-biogel effect on dental plaque progression and canine periodontal indices evolution in a long-term application period.
Diabetic foot infections : application of a nisin-biogel to complement the activity of conventional antibiotics and antiseptics against Staphylococcus aureus biofilms
Publication . Santos, Raquel; Ruza, Diana; Cunha, Eva; Tavares, Luis; Oliveira, Manuela
ABSTRACT - Background Diabetic foot infections (DFIs) are a frequent complication of Diabetes mellitus and a major cause of nontraumatic limb amputations. The Gram-positive bacterium Staphylococcus aureus, known for its resilient biofilms and antibiotic resistant profile, is the most frequent DFI pathogen. It is urgent to develop innovative treatments for these infections, being the antimicrobial peptide (AMP) nisin a potential candidate. We have previously proposed the use of a guar gum biogel as a delivery system for nisin. Here, we evaluated the potential of the nisin-biogel to enhance the efficacy of conventional antibiotics and antiseptics against DFIs S. aureus clinical isolates. Methods A collection of 23 S. aureus strains isolated from DFI patients, including multidrug- and methicillin-resistant strains, was used. The antimicrobial activity of the nisin-biogel was tested alone and in different combinations with the antiseptic chlorhexidine and the antibiotics clindamycin, gentamicin and vancomycin. Isolates' in vitro susceptibility to the different protocols was assessed using broth microdilution methods in order to determine their ability to inhibit and/or eradicate established S. aureus biofilms. Antimicrobials were added to the 96-well plates every 8 h to simulate a typical DFI treatment protocol. Statistical analysis was conducted using RCBD ANOVA in SPSS. Results The nisin-biogel showed a high antibacterial activity against biofilms formed by DFI S. aureus. The combined protocol using nisin-biogel and chlorhexidine presented the highest efficacy in biofilm formation inhibition, significantly higher (p<0.05) than the ones presented by the antibiotics-based protocols tested. Regarding biofilm eradication, there were no significant differences (p>0.05) between the activity of the combination nisin-biogel plus chlorhexidine and the conventional antibiotic-based protocols. Conclusions Results provide a valuable contribution for the development of complementary strategies to conventional antibiotics protocols. A combined protocol including chlorhexidine and nisinbiogel could be potentially applied in medical centres, contributing for the reduction of antibiotic administration, selection pressure on DFI pathogens and resistance strains dissemination.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

OE

Funding Award Number

68219

ID