Loading...
Research Project
Strategic Project - LA 4 - 2011-2012
Funder
Authors
Publications
The anti‑inflammatory action of the analgesic kyotorphin neuropeptide derivatives : insights of a lipid‑mediated mechanism
Publication . Conceição, Katia; Magalhães, Pedro R.; Campos, Sara R. R.; Domingues, Marco M.; Ramu, Vasanthakumar G.; Michalek, Matthias Michalek; Bertani, Philippe; Baptista, António M.; Heras, Montserrat; Bardaji, Eduard R.; Bechinger, Burkhard; Ferreira, Mônica Lopes; Castanho, Miguel A. R. B.
Recently, a designed class of efficient analgesic drugs derived from an endogenous neuropeptide, kyotorphin (KTP, Tyr-Arg) combining C-terminal amidation (KTP-NH2) and N-terminal conjugation to ibuprofen (Ib), IbKTP-NH2, was developed. The Ib moiety is an enhancer of KTP-NH2 analgesic action. In the present study, we have tested the hypothesis that KTP-NH2 is an enhancer of the Ib anti-inflammatory action. Moreover, the impact of the IbKTP-NH2 conjugation on microcirculation was also evaluated by a unified approach based on intravital microscopy in the murine cremasteric muscle. Our data show that KTP-NH2 and conjugates do not cause damage on microcirculatory environment and efficiently decrease the number of leukocyte rolling induced by lipopolysaccharide (LPS). Isothermal titration calorimetry showed that the drugs bind to LPS directly thus contributing to LPS aggregation and subsequent elimination. In a parallel study, molecular dynamics simulations and NMR data showed that the IbKTP-NH2 tandem adopts a preferential "stretched" conformation in lipid bilayers and micelles, with the simulations indicating that the Ib moiety is anchored in the hydrophobic core, which explains the improved partition of IbKTP-NH2 to membranes and the permeability of lipid bilayers to this conjugate relative to KTP-NH2. The ability to bind glycolipids concomitant to the anchoring in the lipid membranes through the Ib residue explains the analgesic potency of IbKTP-NH2 given the enriched glycocalyx of the blood-brain barrier cells. Accumulation of IbKTP-NH2 in the membrane favors both direct permeation and local interaction with putative receptors as the location of the KTP-NH2 residue of IbKTP-NH2 and free KTP-NH2 in lipid membranes is the same.
Phosphoneurofilament heavy chain and N-glycomics from the cerebrospinal fluid in amyotrophic lateral sclerosis
Publication . Gonçalves, Margarida; Tillack, Linda; Carvalho, Mamede; Pinto, Susana; Conradt, Harald S.; Costa, Júlia
Background: Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease of the motor neuron for which no clinically validated biomarkers have been identified.
Methods: We have quantified by ELISA the biomarker phosphoneurofilament heavy chain (pNFH) in the cerebrospinal fluid (CSF) of ALS patients (n=29) and age-matched control patients with other diseases (n=19) by ELISA. Furthermore, we compared protein N-glycosylation of the CSF in ALS patients and controls, by applying a glycomics approach based on liquid chromatography and mass spectrometry.
Results: pNFH levels were significantly higher in ALS patients in comparison with controls (P<0.0001) in particular in fast progressors. The N-glycans found in the CSF were predominantly complex diantennary with sialic acid in α2,3- and α2,6-linkage, and bisecting N-acetylglucosamine-containing structures as well as peripherally fucosylated structures were found. As compared with controls the ALS group had a significant increase of a peak composed of the monosialylated diantennary glycans A2G2S(6)1 and FA2G2S(3)1 (P=0.0348).
Conclusions: Our results underscore the value of pNFH as a biomarker in ALS. In addition, we identified a variation of the N-glycosylation pattern in ALS, suggesting that this change should be explored in future studies as potential biomarker.
Effect of pH on the influenza fusion peptide properties unveiled by constant-pH molecular dynamics simulations combined with experiment
Publication . Lousa, Diana; Pinto, Antónia R. T.; Campos, Sara R. R.; Baptista, António M.; Veiga, Ana Salomé; Castanho, Miguel A. R. B.; Soares, Cláudio M.
The influenza virus fusion process, whereby the virus fuses its envelope with the host endosome membrane to release the genetic material, takes place in the acidic late endosome environment. Acidification triggers a large conformational change in the fusion protein, hemagglutinin (HA), which enables the insertion of the N-terminal region of the HA2 subunit, known as the fusion peptide, into the membrane of the host endosome. However, the mechanism by which pH modulates the molecular properties of the fusion peptide remains unclear. To answer this question, we performed the first constant-pH molecular dynamics simulations of the influenza fusion peptide in a membrane, extending for 40 µs of aggregated time. The simulations were combined with spectroscopic data, which showed that the peptide is twofold more active in promoting lipid mixing of model membranes at pH 5 than at pH 7.4. The realistic treatment of protonation introduced by the constant-pH molecular dynamics simulations revealed that low pH stabilizes a vertical membrane-spanning conformation and leads to more frequent contacts between the fusion peptide and the lipid headgroups, which may explain the increase in activity. The study also revealed that the N-terminal region is determinant for the peptide's effect on the membrane.
The importance of lipid conjugation on anti-fusion peptides against Nipah virus
Publication . Marques, Marta C.; Lousa, Diana; Silva, Patrícia M.; Faustino, André F.; Soares, Cláudio M.; Santos, Nuno C.
Nipah virus (NiV) is a recently emerging zoonotic virus that belongs to the Paramyxoviridae family and the Henipavirus genus. It causes a range of conditions, from asymptomatic infection to acute respiratory illness and fatal encephalitis. The high mortality rate of 40 to 90% ranks these viruses among the deadliest viruses known to infect humans. Currently, there is no antiviral drug available for Nipah virus disease and treatment is only supportive. Thus, there is an urgent demand for efficient antiviral therapies. NiV F protein, which catalyzes fusion between the viral and host membranes, is a potential target for antiviral drugs, as it is a key protein in the initial stages of infection. Fusion inhibitor peptides derived from the HRC-domain of the F protein are known to bind to their complementary domain in the protein's transient intermediate state, preventing the formation of a six-helix bundle (6HB) thought to be responsible for driving the fusion of the viral and cell membranes. Here, we evaluated the biophysical and structural properties of four different C-terminal lipid-tagged peptides. Different compositions of the lipid tags were tested to search for properties that might promote efficacy and broad-spectrum activity. Fluorescence spectroscopy was used to study the interaction of the peptides with biomembrane model systems and human blood cells. In order to understand the structural properties of the peptides, circular dichroism measurements and molecular dynamics simulations were performed. Our results indicate a peptide preference for cholesterol-enriched membranes and a lipid conjugation-driven stabilization of the peptide α-helical secondary structure. This work may contribute for the development of highly effective viral fusion against NiV inhibitors.
Study of the interactions of bovine serum albumin with a molybdenum(II) carbonyl complex by spectroscopic and molecular simulation methods
Publication . Jeremias, Hélia F.; Lousa, Diana; Hollmann, Axel; Coelho, Ana C.; Baltazar, Carla S.; Seixas, João D.; Marques, Ana R.; Santos, Nuno C.; Romão, Carlos C.; Soares, Cláudio M.
Therapy with inhaled carbon monoxide (CO) is being tested in human clinical trials, yet the alternative use of prodrugs, CO-Releasing Molecules (CORMs), is conceptually advantageous. These molecules are designed to release carbon monoxide in specific tissues, in response to some locally expressed stimulus, where CO can trigger a cytoprotective response. The design of such prodrugs, mostly metal carbonyl complexes, must consider their ADMET profiles, including their interaction with transport plasma proteins. However, the molecular details of this interaction remain elusive. To shed light into this matter, we focused on the CORM prototype [Mo(η5-Cp)(CH2COOH)(CO)3] (ALF414) and performed a detailed molecular characterization of its interaction with bovine serum albumin (BSA), using spectroscopic and computational methods. The experimental results show that ALF414 partially quenches the intrinsic fluorescence of BSA without changing its secondary structure. The interaction between BSA and ALF414 follows a dynamic quenching mechanism, indicating that no stable complex is formed between the protein Trp residues and ALF414. The molecular dynamics simulations are in good agreement with the experimental results and confirm the dynamic and unspecific character of the interaction between ALF414 and BSA. The simulations also provide important insights into the nature of the interactions of this CORM prototype with BSA, which are dominated by hydrophobic contacts, with a contribution from hydrogen bonding. This kind of information is useful for future CORM design.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
PEst-OE/EQB/LA0004/2011
