Repository logo
 

Search Results

Now showing 1 - 4 of 4
  • Evaluating the cooling potential of urban green spaces to tackle urban climate change in Lisbon
    Publication . Reis, Cláudia; Lopes, António
    The increase and optimization of urban vegetation has been considered an e ective mitigation measure of an urban heat island (UHI), with positive e ects on human thermal comfort. In this study, the cooling potential of all green spaces in Lisbon was estimated. For that, several mobile measurements of air temperature data were made in a single park (Gulbenkian’s Garden). These measurements were used for the interpolation of air temperature. Furthermore, urban biomass was estimated using remote sensing products, namely Landsat satellite images. Ultimately, a linear regression model was built from the relation between vegetation density and air temperature. Results regarding the estimation of biomass (AGB) in the city of Lisbon were higher in winter than in summer. The urban green spaces cooling potential model showed that for every decrease of 1 C in air temperature between a measuring point and a reference station we need to increase the area covered by vegetation by 50 m2 (planar measure). This methodology can be applied in other urban areas for the quantification of the cooling e ect provided by vegetation in order to improve urban climate thermal conditions and human well-being and, consequently, to mitigate some consequences of future climate change.
  • Modeling the influence of summer sea and estuarine breezes on heat stress in Lisbon (Portugal) using GRAMM-SCI
    Publication . Reis, Cláudia; Oettl, Dietmar; Lopes, António; Nouri, A. Santos; Vasconcelos, João
    In this study, the influence of the Tagus river and Atlantic Ocean breezes in a Mediterranean city (Lisbon) on outdoor thermal comfort was analyzed during the thermal summer days. Hourly wind fields were modeled using the GRAMM-SCI software, initialized with ERA5 reanalysis data. The Universal Thermal Climate Index (UTCI) was calculated for 80 weather stations across the city. Additionally, the UTCI anomalies (ΔUTCI) relative to a reference site (the airport weather station) were calculated during breeze and non-breeze events (typically N/NW winds). Results showed that sea breezes can reduce UTCI levels by up to 2,2◦ C during typical breeze days and up to 5,1◦ C during heatwave breeze events. The effect of these breezes on heat stress conditions is felt up to 4 km from the Tagus river, but especially on the areas up to 500 m. However, in 50 % of the cases where no thermal stress was recorded at the airport during breeze events, Lisbon’s riverfront can be more uncomfortable (moderate heat stress) than the northern part of the city (from 2 to 8 km). Additionally, cooling effect of the breezes is only significant enough to cause a transition to a more comfortable UTCI class (especially from very strong to strong heat stress and from strong to moderate heat stress) during heatwaves (strong to very strong heat stress) and on areas up to 1,5 km from the estuary. The promotion of wind corridors is, therefore, crucial to insuring the progression of sea breezes in urban areas and to reduce heat stress.
  • Unveiling the Thermo‐Hygrometric Influence of Summer Sea and Estuarine Breezes (SEBs) in Lisbon (Portugal)
    Publication . Reis, Cláudia; Lopes, António; Nouri, A. Santos; Vasconcelos, João
    Local wind, such as sea breezes, play a crucial role in cooling coastal cities. This study presents new insights about the thermo-hygrometric influence of the Tagus and Atlantic Ocean breezes(sea and estuarine breezes [SEBs]) in Lisbon’s urban climate (Portugal). SEB events were identified in the summer of 2022 according to a wind rotation criterion: the interruption of prevailing North and Northwest (Nortada) winds during the morning, the wind shift to Northeast/East/Southeast and, sometimes, to further South/Southwest/West (rotation between 22.6° and 292.5°) and the return of the regional flow at late afternoon. Additionally, air temperature and absolute humidity anomalies (ΔT/Haurb) were calculated according to the distance to the riverfront area. Results show that SEB occurred on 37 (31%) out of 120 days, mainly in July (43%) and August (32%), between, on average, 10:00 AM and 4:00 PM, and average wind speeds of 3.4 m/s. According to the daily thermo-hygrometric cycle, the areas up to 4 km of the Tagus estuary were, on average, cooler than northern Lisbon during SEB events, especially the areas up to 500 m (average ΔTurb reached −1.7°C). Additionally, there was a significant increase in the moisture content during SEB hours across the city but especially close to the riverfront area: the areas up to 500 m registered, on average, ΔHaurb of 4.2 g/m3 on SEB events (12:00 PM) against 2.1 g/m3 during typical Nortada days. This research is a starting point for a future delimitation and preservation of SEB penetration zones in Lisbon to address outdoor thermal discomfort during summer.
  • Local Weather Types by thermal periods: deepening the knowledge about Lisbon’s urban climate
    Publication . Reis, Cláudia; Lopes, António; Correia, Ezequiel; Fragoso, Marcelo
    Urbanized hot spots incorporate a great diversity of microclimates dependent, among other factors, on local meteorological conditions. Until today, detailed analysis of the combination of climatic variables at local scale are very scarce in urban areas. Thus, there is an urgent need to produce a LocalWeather Type (LWT) classification that allows to exhaustively distinguish di erent urban thermal patterns. In this study, hourly data from air temperature, wind speed and direction, accumulated precipitation, cloud cover and specific humidity (2009–2018) were integrated in a cluster analysis (K-means) in order to produce a LWT classification for Lisbon’s urban area. This dataset was divided by daytime and nighttime and thermal periods, which were generated considering the annual cycle of air temperatures. Therefore, eight LWT sets were generated. Results show that N and NW LWT are quite frequent throughout the year, with a moderate speed (daily average of 4–6 m/s). In contrast, the frequency of rainy LWT is considerably lower, especially in summer (below 10%). Moreover, during this season the moisture content of the air masses is higher, particularly at night. This methodology will allow deepening the knowledge about the multiple Urban Heat Island (UHI) patterns in Lisbon.