Logo do repositório
 
Publicação

Option pricing in exponential Lévy models with transaction costs

dc.contributor.advisorGuerra, João
dc.contributor.advisorGuerra, Manuel Castro
dc.contributor.authorCantarutti, Nicola
dc.date.accessioned2021-01-13T13:56:38Z
dc.date.available2021-01-13T13:56:38Z
dc.date.issued2020
dc.descriptionDoutoramento em Matemática Aplicada à Economia e Gestãopt_PT
dc.description.abstractIn this thesis we present a new model for pricing European call options in presence of proportional transaction costs, when the stock price follows a general exponential Lévy process. The model is a generalization of the celebrated work of Davis, Panas and Zariphopoulou, where the value of the option is defined as the utility indifference price. This approach requires the solution of a stochastic singular control problem in finite time. We introduce the general formulation of the problem, and derive the associated Hamilton-Jacobi-Bellman equation (HJB), which is a nonlinear partial integro-differential equation, with the form of a variational inequality. We prove that the value function of the problem is a solution of the HJB equation in the viscosity sense. The original problem is then simplified for the specific case of the exponential utility function, under the assumption of absence of default for the investor's portfolio. We solve numerically the optimization problems using the Markov chain approximation method. We also apply the multinomial method to the Variance Gamma process, which is an alternative and more efficient approach to discretize the continuous time process. We provide a numerical scheme and prove that it is monotone, stable and consistent and that the solution converges to the viscosity solution of the original HJB equation. Several numerical solutions are presented for both the original problem and the simplified problem. Numerical results are obtained for the cases of diffusion, Merton and Variance Gamma processes. We provide convergence and time complexity analysis and comparisons with option prices computed using the standard martingale pricing theory.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCantarutti, Nicola (2020). "Option pricing in exponential Lévy models with transaction costs". Tese de Doutoramento, Universidade de Lisboa. Instituto Superior de Economia e Gestão.pt_PT
dc.identifier.tid101613741
dc.identifier.tid101613741
dc.identifier.urihttp://hdl.handle.net/10400.5/20786
dc.language.isoengpt_PT
dc.publisherInstituto Superior de Economia e Gestãopt_PT
dc.subjectoption pricingpt_PT
dc.subjectLévy processespt_PT
dc.subjecttransaction costspt_PT
dc.subjectMarkov chain approximationpt_PT
dc.subjectsingular controlpt_PT
dc.subjectpreços de opçõespt_PT
dc.subjectprocessos de Lévypt_PT
dc.subjectcustos de transaçãopt_PT
dc.subjectaproximação da cadeia de Markovpt_PT
dc.subjectcontrolo singularpt_PT
dc.titleOption pricing in exponential Lévy models with transaction costspt_PT
dc.typedoctoral thesis
dspace.entity.typePublication
rcaap.rightsopenAccesspt_PT
rcaap.typedoctoralThesispt_PT

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
TD-NC-2020.pdf
Tamanho:
3.52 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: