Logo do repositório
 
A carregar...
Logótipo do projeto
Projeto de investigação

Innovative peptides against cancer and pathogenic bacteria, with advances in science, biopharmaceutical drug development, product market targeting, training , and communication.

Financiador

Autores

Publicações

Neuropeptide receptors as potential pharmacological targets for obesity
Publication . Meneguetti, Beatriz T.; Cardoso, Marlon H.; Ribeiro, Camila F.A.; Felício, Mário Romão; Pinto, Ingrid B.; Santos, Nuno C.; Carvalho, Cristiano M.E.; Franco, Octávio L.
Obesity is a chronic multifactorial disease, characterized by an excessive accumulation of adipose tissue. It is usually the result of excessive food intake and/or low energy expenditure. Obesity can be triggered by lifestyle, nutritional, genetic, environmental, hormonal and psychological factors. Several strategies are used to treat obesity, including dietary reeducation, with balanced food intake, increased physical exercise, in order to promote energy expenditure and to overcome the insufficiency in weight reduction by other strategies, and administration of drugs. However, these medications are associated to undesirable side effects, resulting in a high withdrawal rate. Several studies have been focused on the development of compounds that act in the hypothalamic region where the center of the regulation of hunger and satiety is located. Some of them target the activity of endogenous peptides, such as ghrelin pancreatic polypeptide, peptide YY and neuropeptide Y, as well as their receptors. This review addresses the importance of understanding the neuropeptide/peptide hormones and their receptors for the development of novel anti-obesity compounds that may aid in weight reduction as a promising alternative for the treatment of obesity.
vCPP2319 interacts with metastatic breast cancer extracellular vesicles (EVs) and transposes a human blood-brain barrier model
Publication . Oliveira, Filipa; Cavaco, Marco; Figueira, Tiago Nascimento; Napoleão, Patricia; Valle, Javier; Neves, Vera; Andreu, David; Castanho, Miguel A. R. B.
Brain metastases (BM) are frequently found in cancer patients and, though their precise incidence is difficult to estimate, there is evidence for a correlation between BM and specific primary cancers, such as lung, breast, and skin (melanoma). Among all these, breast cancer is the most frequently diagnosed among women and, in this case, BM cause a critical reduction of the overall survival (OS), especially in triple negative breast cancer (TNBC) patients. The main challenge of BM treatment is the impermeable nature of the blood-brain barrier (BBB), which shields the central nervous systems (CNS) from chemotherapeutic drugs. Extracellular vesicles (EVs) have been proposed as ideal natural drug carriers and these may exhibit some advantages over synthetic nanoparticles (NPs). In this work, we isolate breast cancer-derived EVs and study their ability to carry vCPP2319, a peptide with dual cell-penetration and anticancer activities. The selective cytotoxicity of anticancer peptide-loaded EVs towards breast cancer cells and their ability to translocate an in vitro BBB model are also addressed. Overall, it was possible to conclude that vCPP2319 naturally interacts with breast cancer-derived EVs, being retained at the surface of these vesicles. Moreover, the results revealed a cytotoxic activity for peptide-loaded EVs similar to that obtained with the peptide alone and the ability of peptide-loaded EVs to translocate an in vitro BBB model, which contrasts with the results obtained with the peptide alone. In conclusion, this work supports the use of EVs in the development of biological drug-delivery systems (DDS) capable of translocating the BBB.
The antimetastatic breast cancer activity of the viral protein‐derived peptide vCPP2319 as revealed by cellular biomechanics
Publication . Oliveira, Filipa; Cavaco, Marco; Figueira, Tiago Nascimento; Valle, Javier; Neves, Vera; Andreu, David; Gaspar, Diana; Castanho, Miguel A. R. B.
The incidence of metastatic breast cancer (MBC) is increasing and the therapeutic arsenal available to fight it is insufficient. Brain metastases, in particular, represent a major challenge for chemotherapy as the impermeable nature of the blood–brain barrier (BBB) prevents most drugs from targeting cells in the brain. For their ability to transpose biological membranes and transport a broad spectrum of bioactive cargoes, cell-penetrating peptides (CPPs) have been hailed as ideal candidates to deliver drugs across biological barriers. A more ambitious approach is to have the CPP as a drug itself, capable of both killing cancer cells and interacting with the blood/brain interface, therefore blocking the onset of brain metastases. vCPP2319, a viral protein-derived CPP, has both properties as it: (a) is selective toward human breast cancer cells (MDA-MB-231) and increases cell stiffness compared to breast epithelial cells (MCF 10A) hindering the progression of metastases; and (b) adsorbs at the surface of human brain endothelial cells potentially counteracting metastatic cells from reaching the brain. Overall, the results reveal the selective anticancer activity of the peptide vCPP2319, which is also able to reside at the blood–brain interface, therefore counteracting brain penetration by metastatic cancer cells.
Characterization of Tachyplesin peptides and their cyclized analogues to improve antimicrobial and anticancer properties
Publication . Vernen, Felicitas; Harvey, Peta J.; Dias, Susana; Veiga, Ana Salomé; Huang, Yen-Hua; Craik, David J.; Lawrence, Nicole; Troeira Henriques, Sónia
Tachyplesin I, II and III are host defense peptides from horseshoe crab species with antimicrobial and anticancer activities. They have an amphipathic β-hairpin structure, are highly positively-charged and differ by only one or two amino acid residues. In this study, we compared the structure and activity of the three tachyplesin peptides alongside their backbone cyclized analogues. We assessed the peptide structures using nuclear magnetic resonance (NMR) spectroscopy, then compared the activity against bacteria (both in the planktonic and biofilm forms) and a panel of cancerous cells. The importance of peptide-lipid interactions was examined using surface plasmon resonance and fluorescence spectroscopy methodologies. Our studies showed that tachyplesin peptides and their cyclic analogues were most potent against Gram-negative bacteria and melanoma cell lines, and showed a preference for binding to negatively-charged lipid membranes. Backbone cyclization did not improve potency, but improved peptide stability in human serum and reduced toxicity toward human red blood cells. Peptide-lipid binding affinity, orientation within the membrane, and ability to disrupt lipid bilayers differed between the cyclized peptide and the parent counterpart. We show that tachyplesin peptides and cyclized analogues have similarly potent antimicrobial and anticancer properties, but that backbone cyclization improves their stability and therapeutic potential.
Synthesis, structure, and activity of the antifungal plant defensin PvD1
Publication . Skalska, Julia; Andrade, Vitor M.; Cena, Gabrielle L.; Harvey, Peta J.; Gaspar, Diana; Mello, Érica O.; Henriques, Sónia T.; Valle, Javier; Gomes, Valdirene M.; Conceição, Katia; Castanho, Miguel A. R. B.; Andreu, David
Available treatments for invasive fungal infections have limitations, including toxicity and the emergence of resistant strains. Therefore, there is an urgent need for alternative solutions. Because of their unique mode of action and high selectivity, plant defensins (PDs) are worthy therapeutic candidates. Chemical synthesis remains a preferred method for the production of many peptide-based therapeutics. Given the relatively long sequence of PDs, as well as their complicated posttranslational modifications, the synthetic route can be considered challenging. Here, we describe a total synthesis of PvD1, the defensin from the common bean Phaseolus vulgaris. Analytical, structural, and functional characterization revealed that both natural and synthetic peptides fold into a canonical CSαβ motif stabilized by conserved disulfide bonds. Moreover, synthetic PvD1 retained the biological activity against four different Candida species and showed no toxicity in vivo. Adding the high resistance of synthetic PvD1 to proteolytic degradation, we claim that conditions are now met to consider PDs druggable biologicals.

Unidades organizacionais

Descrição

Palavras-chave

Contribuidores

Financiadores

Entidade financiadora

European Commission

Programa de financiamento

H2020

Número da atribuição

644167

ID