Repository logo
 
Loading...
Project Logo
Research Project

Associated Laboratory for Green Chemistry - Clean Technologies and Processes

Authors

Publications

Diclidophora luscae (Monogenea: Diclidophoridae) in pouting, Trisopterus luscus (Linnaeus, 1758) from the northeast Atlantic; epidemiology, morphology, molecular and phylogenetic analysis
Publication . Ramos, P.; Varandas, R.; Conceição, I.L.; Grade, A.; Oliveira, M.M.; Alexandre-Pires, G.; Rosa, F.
Diclidophora (Monogenea) species are gill parasites with a stenoxenic specificity occurring only in Gadiformes. Epidemiological, morphological, molecular and phylogenetic studies were performed on 594 Diclidophora specimens collected from 213 Trisopterus luscus captured in the northeast Atlantic off the Portuguese coast during 2012, 2013 and 2020. Prevalence, parasite abundance and infection intensity were determined. Positive correlation between fish weight and length and infection intensity was observed. The effects of preservation on the parasite morphological features were studied, highlighting that specimen’s identification should be reinforced by molecular studies. A sequence of D. luscae capelanii from T. capelanus captured in the Mediterranean Sea included in the 28S rDNA molecular analysis was nested within a robust D. luscae clade. Data analysis suggested that this species is in fact D. luscae, which is compatible with T. luscus and T. capelanus. The identity of fish hosts was confirmed by barcoding. For the first time, data on the infection parameters is shown, highlighting the importance of including this parasite in the monitoring plans for a holistic approach with possible effects for the management of pouting resources aiming of attaining sustainable development and biodiversity conservation measures, according to the 14th objective of the 2030 agenda
Cr-based MOF/IL composites as fillers in mixed matrix membranes for CO2 separation
Publication . Ferreira, Inês C.; Ferreira, Tiago J.; Barbosa, André D.S.; Castro, Baltazar; Ribeiro, Rui P.P.L.; Mota, José P.B.; Delgado Alves, Vitor; Cunha-Silva, Luís; Esteves, Isabel A.A.C.; Neves, Luísa A.
New composite materials made of bromide-based ionic liquids (ILs) and metal–organic framework (MOF) MIL- 101(Cr) were produced using two different ILs. The powdered composites [PMIM][Br]@MIL-101(Cr) and [BMIM][Br]@MIL-101(Cr) were rigorously characterized, and it was confirmed that both ILs were incorporated into the MOF structure. Single-component CO2 and N2 adsorption–desorption isotherms for the pristine MIL-101 (Cr) and [BMIM][Br]@MIL-101(Cr), at 303 K and up to 10 bar, showed that the composite has lower gas adsorption capacity and selectivity when compared with the pristine MOF due to the IL incorporation. Mixed Matrix membranes (MMMs) were prepared by the solvent evaporation method, using Matrimid®5218 as the polymeric matrix, and MIL-101(Cr) and IL@MIL-101(Cr) composites as fillers with different loadings (10, 20 and 30 wt%). All prepared membranes were dense, except for the Matrimid®5218/[PMIM][Br]@MIL-101(Cr) ones, and their mechanical properties were improved by the presence of the IL in the composite fillers. Single-gas permeation experiments with CO2 and N2 were performed at 303 K for the Matrimid®5218/MIL-101(Cr) and Matrimid®5218/[BMIM][Br]@MIL-101(Cr) membranes, as the Matrimid®5218/[PMIM][Br]@MIL-101(Cr) showed voids. Independently of the filler percentage, the Matrimid®5218/MIL-101(Cr) membranes showed superior CO2 permeability than the Matrimid®5218/[BMIM][Br]@MIL-101(Cr) ones. In every case, the best CO2/N2 selectivity was achieved with a 20 wt% of filler loading, which indicates the existence of an optimum loading that yields the best membrane separation performance
The road to molecular identification and detection of fungal grapevine trunk diseases
Publication . Azevedo-Nogueira, Filipe; Rego, Cecilia; Gonçalves, Helena Maria Rodrigues; Fortes, Ana Margarida; Gramaje, David; Martins-Lopes, Paula
Grapevine is regarded as a highly profitable culture, being well spread worldwide and mostly directed to the wine-producing industry. Practices to maintain the vineyard in healthy conditions are tenuous and are exacerbated due to abiotic and biotic stresses, where fungal grapevine trunk diseases (GTDs) play a major role. The abolishment of chemical treatments and the intensification of several management practices led to an uprise in GTD outbreaks. Symptomatology of GTDs is very similar among diseases, leading to underdevelopment of the vines and death in extreme scenarios. Disease progression is widely affected by biotic and abiotic factors, and the prevalence of the pathogens varies with country and region. In this review, the state-of-the-art regarding identification and detection of GTDs is vastly analyzed. Methods and protocols used for the identification of GTDs, which are currently rather limited, are highlighted. The main conclusion is the utter need for the development of new technologies to easily and precisely detect the presence of the pathogens related to GTDs, allowing to readily take phytosanitary measures and/or proceed to plant removal in order to establish better vineyard management practices. Moreover, new practices and methods of detection, identification, and quantification of infectious material would allow imposing greater control on nurseries and plant exportation, limiting the movement of infected vines and thus avoiding the propagation of fungal inoculum throughout wine regions
Insights into therapeutic liquid mixtures and formulations towards tuberculosis therapy
Publication . Santos, Filipa; Pires, David; Anes, Elsa; Duarte, Ana Rita C.
Therapeutic liquid mixtures, as deep eutectic systems, are considered a sustainable strategy that can be useful for the modification and enhancement of the pharmacokinetics and pharmacodynamics of different active ingredients. In this study, we assessed the stability and antibacterial activity of therapeutic liquid formulations prepared with anti-tuberculosis drugs. Tuberculosis therapy presents various pitfalls related, for example, to the administration of prolonged regimens of multiple drugs, different severe adverse effects, low compliance of the patient to treatment and the development of drug resistance. During this study, it was possible to assess the physicochemical stability of the formulations for 6 months, by polarized optical microscopy, 1H NMR and FTIR-ATR. Furthermore, the mixtures present an antibacterial effect against a drug-susceptible Mycobacterium tuberculosis strain (H37Rv). This was particularly evident for the mixtures with ethambutol incorporated, making them interesting to pursue with further studies and evaluation of clinical applicability. Upon infection, it was also observed that a single and higher dose appears to be more effective than lower separate doses, which could allow the production of patient-friendly formulations.
Improved Triamcinolone acetonide-eluting contact lenses based on cyclodextrins and high hydrostatic pressure assisted complexation
Publication . Marto-Costa, Carolina; Toffoletto, Nadia; Salema-Oom, Madalena; Antunes, Alexandra M. M.; Pinto, Carlos A.; Saraiva, Jorge A.; Silva-Herdade, Ana S.; Alvarez-Lorenzo, Carmen; Serro, Ana
Contact lenses (CLs) constitute an advantageous platform for the topical release of corticosteroids due to their prolonged contact with the eye. However, the lipophilic nature of corticosteroids hampers CLs' ability to release therapeutic amounts. Two approaches to improve loading and release of triamcinolone acetonide (TA) from poly(2-hydroxyethyl methacrylate)-based hydrogels were investigated: adding 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) to the monomers solution before polymerization (HEMA/i-CD) and an hydrogels' post-treatment with HP-β-CD (HEMA/p-CD). The effect of HP-β-CD and sterilization by high hydrostatic pressure (HHP) on the hydrogel properties (water content, oxygen and ion permeability, roughness, transmittance, and stiffness) was evaluated. The HEMA/i-CD hydrogels had stronger affinity for TA, sustaining its release for one day. HHP sterilization promoted the formation of cyclodextrin-TA complexes within the hydrogels, improving their drug-loading capacity »60 %. Cytotoxicity and irritability tests confirmed the safety of the therapeutic CLs. TA released from the hydrogels permeated through ocular tissues ex vivo and showed anti-inflammatory activity. Finally, a previously validated mathematical model was used to estimate the ability of the TA-loaded CLs to deliver therapeutic drug concentrations to the posterior part of the eye. Overall, HP-β-CD-containing CLs are promising candidates for the topical ocular application of TA as an alternative delivery system to intraocular injections.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UIDB/50006/2020

ID