Logo do repositório
 
A carregar...
Logótipo do projeto
Projeto de investigação

Towards outstanding research and training in tumour biology at IMM

Financiador

Autores

Publicações

Endothelial cell invasion is controlled by dactylopodia
Publication . Figueiredo, Ana; Barbacena, Pedro; Russo, Ana; Vaccaro, Silvia; Ramalho, Daniela; Pena, Andreia; Lima, Aida Pires; Rua Ferreira, Rita; Fidalgo, Marta; El-Marjou, Fatima; Carvalho, Yulia; Vasconcelos, Francisca; Lennon-Duménil, Ana-Maria; Vignjevic, Danijela Matic; Franco, Claudio
Sprouting angiogenesis is fundamental for development and contributes to cancer, diabetic retinopathy, and cardiovascular diseases. Sprouting angiogenesis depends on the invasive properties of endothelial tip cells. However, there is very limited knowledge on how tip cells invade into tissues. Here, we show that endothelial tip cells use dactylopodia as the main cellular protrusion for invasion into nonvascular extracellular matrix. We show that dactylopodia and filopodia protrusions are balanced by myosin IIA (NMIIA) and actin-related protein 2/3 (Arp2/3) activity. Endothelial cell-autonomous ablation of NMIIA promotes excessive dactylopodia formation in detriment of filopodia. Conversely, endothelial cell-autonomous ablation of Arp2/3 prevents dactylopodia development and leads to excessive filopodia formation. We further show that NMIIA inhibits Rac1-dependent activation of Arp2/3 by regulating the maturation state of focal adhesions. Our discoveries establish a comprehensive model of how endothelial tip cells regulate its protrusive activity and will pave the way toward strategies to block invasive tip cells during sprouting angiogenesis.
Non-canonical Wnt signaling regulates junctional mechanocoupling during angiogenic collective cell migration
Publication . Carvalho, Joana R.; Fortunato, Isabela C.; Fonseca, Catarina; Pezzarossa, Anna; Barbacena, Pedro; Dominguez-Cejudo, Maria Angeles; Vasconcelos, Francisca; Santos, Nuno C.; Carvalho, Filomena Almeida; Franco, Claudio
Morphogenesis of hierarchical vascular networks depends on the integration of multiple biomechanical signals by endothelial cells, the cells lining the interior of blood vessels. Expansion of vascular networks arises through sprouting angiogenesis, a process involving extensive cell rearrangements and collective cell migration. Yet, the mechanisms controlling angiogenic collective behavior remain poorly understood. Here, we show this collective cell behavior is regulated by non-canonical Wnt signaling. We identify that Wnt5a specifically activates Cdc42 at cell junctions downstream of ROR2 to reinforce coupling between adherens junctions and the actin cytoskeleton. We show that Wnt5a signaling stabilizes vinculin binding to alpha-catenin, and abrogation of vinculin in vivo and in vitro leads to uncoordinated polarity and deficient sprouting angiogenesis in Mus musculus. Our findings highlight how non-canonical Wnt signaling coordinates collective cell behavior during vascular morphogenesis by fine-tuning junctional mechanocoupling between endothelial cells.
YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development
Publication . Neto, Filipa; Klaus-Bergmann, Alexandra; Ong, Yu Ting; Alt, Silvanus; Vion, Anne-Clémence; Szymborska, Anna; Carvalho, Joana R.; Hollfinger, Irene; Bartels-Klein, Eireen; Franco, Claudio; Potente, Michael; Gerhardt, Holger
Formation of blood vessel networks by sprouting angiogenesis is critical for tissue growth, homeostasis and regeneration. How endothelial cells arise in adequate numbers and arrange suitably to shape functional vascular networks is poorly understood. Here we show that YAP/TAZ promote stretch-induced proliferation and rearrangements of endothelial cells whilst preventing bleeding in developing vessels. Mechanistically, YAP/TAZ increase the turnover of VE-Cadherin and the formation of junction associated intermediate lamellipodia, promoting both cell migration and barrier function maintenance. This is achieved in part by lowering BMP signalling. Consequently, the loss of YAP/TAZ in the mouse leads to stunted sprouting with local aggregation as well as scarcity of endothelial cells, branching irregularities and junction defects. Forced nuclear activity of TAZ instead drives hypersprouting and vascular hyperplasia. We propose a new model in which YAP/TAZ integrate mechanical signals with BMP signaling to maintain junctional compliance and integrity whilst balancing endothelial cell rearrangements in angiogenic vessels.
Aerocyte specification and lung adaptation to breathing is dependent on alternative splicing changes
Publication . Fidalgo, Marta F; Fonseca, Catarina; Caldas, Paulo; Raposo, Alexandre; Balboni, Tania; Henao Mišíková, Lenka; Grosso, Ana R.; Vasconcelos, Francisca; Franco, Claudio
Adaptation to breathing is a critical step in lung function and it is crucial for organismal survival. Alveoli are the lung gas exchange units and their development, from late embryonic to early postnatal stages, requires feedbacks between multiple cell types. However, how the crosstalk between the alveolar cell types is modulated to anticipate lung adaptation to breathing is still unclear. Here, we uncovered a synchronous alternative splicing switch in multiple genes in the developing mouse lungs at the transition to birth, and we identified hnRNP A1, Cpeb4, and Elavl2/HuB as putative splicing regulators of this transition. Notably, we found that Vegfa switches from the Vegfa 164 isoform to the longer Vegfa 188 isoform exclusively in lung alveolar epithelial AT1 cells. Functional analysis revealed that VEGFA 188 (and not VEGFA 164) drives the specification of Car4-positive aerocytes, a subtype of alveolar endothelial cells specialized in gas exchanges. Our results reveal that the cell type-specific regulation of Vegfa alternative splicing just before birth modulates the epithelial-endothelial crosstalk in the developing alveoli to promote lung adaptation to breathing.

Unidades organizacionais

Descrição

Palavras-chave

Contribuidores

Financiadores

Entidade financiadora

European Commission

Programa de financiamento

H2020

Número da atribuição

692322

ID