Loading...
Research Project
MicroRNA determinants of the balance between effector and regulatory T cells in vivo
Funder
Authors
Publications
Primary tumors limit metastasis formation through induction of IL15-mediated cross-talk between patrolling monocytes and NK cells
Publication . Kubo, Hiroshi; Mensurado, Sofia; Gonçalves-Sousa, Natacha; Serre, Karine; Silva-Santos, Bruno
Metastases are responsible for the vast majority of cancer-related deaths. Although tumor cells can become invasive early during cancer progression, metastases formation typically occurs as a late event. How the immune response to primary tumors may dictate this outcome remains poorly understood, which hampers our capacity to manipulate it therapeutically. Here, we used a two-step experimental model, based on the highly aggressive B16F10 melanoma, that temporally segregates the establishment of primary tumors (subcutaneously) and the formation of lung metastases (from intravenous injection). This allowed us to identify a protective innate immune response induced by primary tumors that inhibits experimental metastasis. We found that in the presence of primary tumors, increased numbers of natural killer (NK) cells with enhanced IFNγ, granzyme B, and perforin production were recruited to the lung upon metastasis induction. These changes were mirrored by a local accumulation of patrolling monocytes and macrophages with high expression of MHC class II and NOS2. Critically, the protective effect on metastasis was lost upon patrolling monocyte or NK cell depletion, IL15 neutralization, or IFNγ ablation. The combined analysis of these approaches allowed us to establish a hierarchy in which patrolling monocytes, making IL15 in response to primary tumors, activate NK cells and IFNγ production that then inhibit lung metastasis formation. This work identifies an innate cell network and the molecular determinants responsible for "metastasis immunosurveillance," providing support for using the key molecular mediator, IL15, to improve immunotherapeutic outcomes.
γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer
Publication . Silva-Santos, Bruno; Mensurado, Sofia; Coffelt, Seth B.
The potential of cancer immunotherapy relies on the mobilization of immune cells capable of producing antitumour cytokines and effectively killing tumour cells. These are major attributes of γδ T cells, a lymphoid lineage that is often underestimated despite its major role in tumour immune surveillance, which has been established in a variety of preclinical cancer models. This situation notwithstanding, in particular instances the tumour microenvironment seemingly mobilizes γδ T cells with immunosuppressive or tumour-promoting functions, thus emphasizing the importance of regulating γδ T cell responses in order to realize their translation into effective cancer immunotherapies. In this Review we outline both seminal work and recent advances in our understanding of how γδ T cells participate in tumour immunity and how their functions are regulated in experimental models of cancer. We also discuss the current strategies aimed at maximizing the therapeutic potential of human γδ T cells, on the eve of their exploration in cancer clinical trials that may position them as key players in cancer immunotherapy.
γδ-T cells promote IFN-γ–dependent Plasmodium pathogenesis upon liver-stage infection
Publication . Ribot, Julie; Neres, Rita; Zuzarte-Luis, Vanessa; Gomes, Anita Q.; Mancio-Silva, Liliana; Mensurado, Sofia; Neves, Daniel; Monteiro Dos Santos, Miguel; Carvalho, Tânia; Landry, Jonathan J. M.; A. Rolo, Eva; Malik, Ankita; Silva, Daniel Varón; Mota, Maria M.; Silva-Santos, Bruno; Pamplona, Ana
Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αβ-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αβ-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.
Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments
Publication . Lopes, Noel; McIntyre, Claire; Martin, Stefania; Raverdeau, Mathilde; Sumaria, Nital; Kohlgruber, Ayano C.; Fiala, Gina; Agudelo, Leandro Z.; Dyck, Lydia; Kane, Harry; Douglas, Aaron; Cunningham, Stephen; Prendeville, Hannah; Loftus, Roisin; Carmody, Colleen; Pierre, Philippe; Kellis, Manolis; Brenner, Michael; Argüello, Rafael J.; Silva-Santos, Bruno; Pennington, Daniel J.; Lynch, Lydia
Metabolic programming controls immune cell lineages and functions, but little is known about γδ T cell metabolism. Here, we found that γδ T cell subsets making either interferon-γ (IFN-γ) or interleukin (IL)-17 have intrinsically distinct metabolic requirements. Whereas IFN-γ+ γδ T cells were almost exclusively dependent on glycolysis, IL-17+ γδ T cells strongly engaged oxidative metabolism, with increased mitochondrial mass and activity. These distinct metabolic signatures were surprisingly imprinted early during thymic development and were stably maintained in the periphery and within tumors. Moreover, pro-tumoral IL-17+ γδ T cells selectively showed high lipid uptake and intracellular lipid storage and were expanded in obesity and in tumors of obese mice. Conversely, glucose supplementation enhanced the antitumor functions of IFN-γ+ γδ T cells and reduced tumor growth upon adoptive transfer. These findings have important implications for the differentiation of effector γδ T cells and their manipulation in cancer immunotherapy.
Thymic determinants of γδ T cell differentiation
Publication . Muñoz-Ruiz, Miguel; Sumaria, Nital; Pennington, Daniel J.; Silva-Santos, Bruno
γd T cells have emerged as major sources of the proinflammatory cytokines interleukin-17 (IL-17) and interferon-γ (IFNγ) in multiple models of infection, cancer and autoimmune disease. However, unlike their αβ T cell counterparts that require peripheral activation for effector cell differentiation, γδ T cells instead can be 'developmentally programmed' in the thymus to generate discrete γδ T cell effector subsets with distinctive molecular signatures. Nonetheless, recent studies have presented conflicting viewpoints on the signals involved in thymic γδ T cell development and differentiation, namely on the role of both T cell receptor (TCR)-dependent and TCR-independent factors. Here we review the current data and the ongoing controversies.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
European Commission
Funding programme
H2020
Funding Award Number
646701
