Loading...
Research Project
STRUCTURAL PROTEINS OF ENVELOPED VIRUS: FROM BIOCHEMISTRY TO MOLECULAR MEDICINE. A FOCUS ON DENGUE HEMORRHAGIC FEVER VIRUS
Funder
Authors
Publications
Mechanisms of vesicular stomatitis virus inactivation by protoporphyrin ix, zinc- protoporphyrin ix, and mesoporphyrin ix
Publication . Oliveira, Christine Cruz; Almeida, Andreza F.; Freire, João M.; Caruso, Marjolly B.; Morando, Maria A.; Ferreira, Vivian N. S.; Miranda, Iranaia Assunção; Gomes, Andre M. O.; Castanho, Miguel A. R. B.; Poian, Andrea T. da
Virus resistance to antiviral therapies is an increasing concern that makes the development of broad-spectrum antiviral drugs urgent. Targeting of the viral envelope, a component shared by a large number of viruses, emerges as a promising strategy to overcome this problem. Natural and synthetic porphyrins are good candidates for antiviral development due to their relative hydrophobicity and pro-oxidant character. In the present work, we characterized the antiviral activities of protoprophyrin IX (PPIX), Zn-protoporphyrin IX (ZnPPIX), and mesoporphyrin IX (MPIX) against vesicular stomatitis virus (VSV) and evaluated the mechanisms involved in this activity. Treatment of VSV with PPIX, ZnPPIX, and MPIX promoted dose-dependent virus inactivation, which was potentiated by porphyrin photoactivation. All three porphyrins inserted into lipid vesicles and disturbed the viral membrane organization. In addition, the porphyrins also affected viral proteins, inducing VSV glycoprotein cross-linking, which was enhanced by porphyrin photoactivation. Virus incubation with sodium azide and α-tocopherol partially protected VSV from inactivation by porphyrins, suggesting that singlet oxygen (1O2) was the main reactive oxygen species produced by photoactivation of these molecules. Furthermore, 1O2 was detected by 9,10-dimethylanthracene oxidation in photoactivated porphyrin samples, reinforcing this hypothesis. These results reveal the potential therapeutic application of PPIX, ZnPPIX, and MPIX as good models for broad antiviral drug design.
siRNA-cell-penetrating peptides complexes as a combinatorial therapy against chronic myeloid leukemia using BV173 cell line as model
Publication . Freire, João Miguel; Figueiredo, Inês Rego de; Valle, Javier; Veiga, Ana Salomé; Andreu, David; Enguita, Francisco J.; Castanho, Miguel A. R. B.
Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by a single gene mutation, a reciprocal translocation that originates the Bcr-Abl gene with constitutive tyrosine kinase activity. As a monogenic disease, it is an optimum target for RNA silencing therapy. We developed a siRNA-based therapeutic approach in which the siRNA is delivered by pepM or pepR, two cell-penetrating peptides (CPPs) derived from the dengue virus capsid protein. These peptides have a dual role: siRNA delivery into cells and direct action as bioportides, i.e. intracellularly bioactive CPPs, targetting cancer-related signaling processes. Both pepM and pepR penetrate the positive Bcr-Abl+ Cell Line (BV173). Five in silico designed anti-Bcr-Abl siRNA were selected for in vitro analysis after thorough screening. The Bcr-Abl downregulation kinetics (48h to 168h) was followed by quantitative PCR. The bioportide action of the peptide vectors was evaluated by genome-wide microarray analysis and further validated by testing BV173 cell cycle and cell proliferation monitoring different genes involved in housekeeping/cell stress (RPL13A, HPRT1), cell proliferation (ki67), cell apoptosis (Caspase 3 and Caspase 9) and cell cycle steps (CDK2, CCDN2, CDKN1A). Assays with a commercial transfection agent were carried out for comparison purposes. Maximal Bcr-Abl gene knockdown was observed for one of the siRNA when delivered by pepM at 120h. Both pepM and pepR showed downregulation effects on proliferative CML-related signaling pathways having direct impact on BV173 cell cycle and proliferation, thus reinforcing the siRNA effect by acting as anticancer molecules. With this work we show the therapeutic potential of a CPP shuttle that combines intrinsic anticancer properties with the ability to deliver functional siRNA into CML cell models. By such combination, the pepM-siRNA conjugates lowered Bcr-Abl gene expression levels more extensively than conventional siRNA delivery technologies and perturbed leukemogenic cell homeostasis, hence revealing their potential as novel alternative scaffolds for CML therapy.
Anti-HIV-1 Activity of pepRF1, a Proteolysis-Resistant CXCR4 Antagonist Derived from Dengue Virus Capsid Protein
Publication . Cadima Couto, Carla Iris; Tauzin, Alexandra; Freire, João Miguel; Figueira, Tiago N.; Silva, Rúben; Pérez-Peinado, Clara; Cunha-Santos, Catarina; Bártolo, Inês; Taveira, Nuno; Gano, Lurdes; Correia, João D. G.; Goncalves, Joao; Mammano, Fabrizio; Andreu, David; Castanho, Miguel A. R. B.; Veiga, Ana Salomé
There is an urgent need for the development of new anti-HIV drugs that can complement existing medicines to be used against resistant strains. Here, we report the anti-HIV-1 peptide pepRF1, a human serum-resistant peptide derived from the Dengue virus capsid protein. In vitro, pepRF1 shows a 50% inhibitory concentration of 1.5 nM with a potential therapeutic window higher than 53 000. This peptide is specific for CXCR4-tropic strains, preventing viral entry into target cells by binding to the viral coreceptor CXCR4, acting as an antagonist of this receptor. pepRF1 is more effective than T20, the only peptide-based HIV-1 entry inhibitor approved, and excels in inhibiting a HIV-1 strain resistant to T20. Potentially, pepRF1 can be used alone or in combination with other anti-HIV drugs. Furthermore, one can also envisage its use as a novel therapeutic strategy for other CXCR4-related diseases.
New potent membrane-targeting antibacterial peptides from viral capsid proteins
Publication . Dias, Susana A.; Freire, João M.; Pérez-Peinado, Clara; Domingues, Marco M.; Gaspar, Diana; Vale, Nuno; Gomes, Paula Gomes; Andreu, David; Henriques, Sónia T.; Castanho, Miguel A. R. B.; Veiga, Ana S.
The increasing prevalence of multidrug-resistant bacteria urges the development of new antibacterial agents. With a broad spectrum activity, antimicrobial peptides have been considered potential antibacterial drug leads. Using bioinformatic tools we have previously shown that viral structural proteins are a rich source for new bioactive peptide sequences, namely antimicrobial and cell-penetrating peptides. Here, we test the efficacy and mechanism of action of the most promising peptides among those previously identified against both Gram-positive and Gram-negative bacteria. Two cell-penetrating peptides, vCPP 0769 and vCPP 2319, have high antibacterial activity against Staphylococcus aureus, MRSA, Escherichia coli, and Pseudomonas aeruginosa, being thus multifunctional. The antibacterial mechanism of action of the two most active viral protein-derived peptides, vAMP 059 and vCPP 2319, was studied in detail. Both peptides act on both Gram-positive S. aureus and Gram-negative P. aeruginosa, with bacterial cell death occurring within minutes. Also, these peptides cause bacterial membrane permeabilization and damage of the bacterial envelope of P. aeruginosa cells. Overall, the results show that structural viral proteins are an abundant source for membrane-active peptides sequences with strong antibacterial properties.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
OE
Funding Award Number
SFRH/BD/70423/2010
