Logo do repositório
 
A carregar...
Logótipo do projeto
Projeto de investigação

In the search of the synaptic mechanism operated by a novel selective antiepileptic drug

Autores

Publicações

Adjusting the brakes to adjust neuronal activity: adenosinergic modulation of GABAergic transmission
Publication . Sebastião, Ana M; Ribeiro, Joaquim A.
About 50 years elapsed from the publication of the first full paper on the neuromodulatory action of adenosine at a 'simple' synapse model, the neuromuscular junction (Ginsborg and Hirst, 1972). In that study adenosine was used as a tool to increase cyclic AMP and for the great surprise, it decreased rather than increased neurotransmitter release, and for a further surprise, its action was prevented by theophylline, at the time only known as inhibitor of phosphodiesterases. These intriguing observations opened the curiosity for immediate studies relating the action of adenine nucleotides, known to be released together with neurotransmitters, to that of adenosine (Ribeiro and Walker, 1973, 1975). Our understanding on the ways adenosine uses to modulate synapses, circuits, and brain activity, vastly expanded since then. However, except for A2A receptors, whose actions upon GABAergic neurons of the striatum are well known, most of the attention given to the neuromodulatory action of adenosine has been focusing upon excitatory synapses. Evidence is growing that GABAergic transmission is also a target for adenosinergic neuromodulation through A1 and A2A receptors. Some o these actions have specific time windows during brain development, and others are selective for specific GABAergic neurons. Both tonic and phasic GABAergic transmission can be affected, and either neurons or astrocytes can be targeted. In some cases, those effects result from a concerted action with other neuromodulators. Implications of these actions in the control of neuronal function/dysfunction will be the focus of this review.
Unexpected short- and long-term effects of chronic adolescent HU-210 exposure on emotional behavior
Publication . Farinha Ferreira, Jorge Miguel; Rei, Nádia; Fonseca-Gomes, João; Miranda-Lourenço, Catarina; Serrão, Paula; Vaz, Sandra H.; Gomes, Joana I.; Martins, Valéria; Pereira, Beatriz de Alves; Sebastião, Ana M
Chronic adolescent cannabinoid receptor agonist exposure has been shown to lead to persistent increases in depressive-like behaviors. This has been a key obstacle to the development of cannabinoid-based therapeutics. However, most of the published work has been performed with only three compounds, namely Δ9-tetrahydrocannabinol, CP55,940 and WIN55,212-2. Hypothesizing that different compounds may lead to distinct outcomes, we herein used the highly potent CB1R/CB2R full agonist HU-210, and first aimed at replicating cannabinoid-induced long-lasting effects, by exposing adolescent female Sprague-Dawley rats to increasing doses of HU-210, for 11 days and testing them at adulthood, after a 30-day drug washout. Surprisingly, HU-210 did not significantly impact adult anxious- or depressive-like behaviors. We then tested whether chronic adolescent HU-210 treatment resulted in short-term (24h) alterations in depressive-like behavior. Remarkably, HU-210 treatment simultaneously induced marked antidepressant- and prodepressant-like responses, in the modified forced swim (mFST) and sucrose preference tests (SPT), respectively. Hypothesizing that mFST results were a misleading artifact of HU-210-induced behavioral hyperreactivity to stress, we assessed plasmatic noradrenaline and corticosterone levels, under basal conditions and following an acute swim-stress episode. Notably, we found that while HU-210 did not alter basal noradrenaline or corticosterone levels, it greatly augmented the stress-induced increase in both. Our results show that, contrary to previously studied cannabinoid receptor agonists, HU-210 does not induce persisting depressive-like alterations, despite inducing marked short-term increases in stress-induced reactivity. By showing that not all cannabinoid receptor agonists may induce long-term negative effects, these results hold significant relevance for the development of cannabinoid-based therapeutics.
Of adenosine and the blues: the adenosinergic system in the pathophysiology and treatment of major depressive disorder
Publication . Gomes, Joana I.; Farinha Ferreira, Jorge Miguel; Rei, Nádia; Gonçalves-Ribeiro, Joana; Ribeiro, Joaquim A.; Sebastião, Ana M; Vaz, Sandra H.
Major depressive disorder (MDD) is the foremost cause of global disability, being responsible for enormous personal, societal, and economical costs. Importantly, existing pharmacological treatments for MDD are partially or totally ineffective in a large segment of patients. As such, the search for novel antidepressant drug targets, anchored on a clear understanding of the etiological and pathophysiological mechanisms underpinning MDD, becomes of the utmost importance. The adenosinergic system, a highly conserved neuromodulatory system, appears as a promising novel target, given both its regulatory actions over many MDD-affected systems and processes. With this goal in mind, we herein review the evidence concerning the role of adenosine as a potential player in pathophysiology and treatment of MDD, combining data from both human and animal studies. Altogether, evidence supports the assertions that the adenosinergic system is altered in both MDD patients and animal models, and that drugs targeting this system have considerable potential as putative antidepressants. Furthermore, evidence also suggests that modifications in adenosine signaling may have a key role in the effects of several pharmacological and non-pharmacological antidepressant treatments with demonstrated efficacy, such as electroconvulsive shock, sleep deprivation, and deep brain stimulation. Lastly, it becomes clear from the available literature that there is yet much to study regarding the role of the adenosinergic system in the pathophysiology and treatment of MDD, and we suggest several avenues of research that are likely to prove fruitful.
Adenosine receptors are the on‐and‐off switch of astrocytic cannabinoid type 1 (CB1) receptor effect upon synaptic plasticity in the medial prefrontal cortex
Publication . Gonçalves-Ribeiro, Joana; Savchak, Oksana K.; Pinto, Sara; Gomes, Joana I.; Rivas‐Santisteban, Rafael; Lillo, Alejandro; Sánchez Romero, Javier; Sebastião, Ana M; Navarrete, Marta; Navarro, Gemma; Franco, Rafael; Vaz, Sandra H.
The medial prefrontal cortex (mPFC) is involved in cognitive functions such as working memory. Astrocytic cannabinoid type 1 receptor (CB1R) induces cytosolic calcium (Ca2+) concentration changes with an impact on neuronal function. mPFC astrocytes also express adenosine A1 and A2A receptors (A1R, A2AR), being unknown the crosstalk between CB1R and adenosine receptors in these cells. We show here that a further level of regulation of astrocyte Ca2+ signaling occurs through CB1R-A2AR or CB1R-A1R heteromers that ultimately impact mPFC synaptic plasticity. CB1R-mediated Ca2+ transients increased and decreased when A1R and A2AR were activated, respectively, unveiling adenosine receptors as modulators of astrocytic CB1R. CB1R activation leads to an enhancement of long-term potentiation (LTP) in the mPFC, under the control of A1R but not of A2AR. Notably, in IP3R2KO mice, that do not show astrocytic Ca2+ level elevations, CB1R activation decreases LTP, which is not modified by A1R or A2AR. The present work suggests that CB1R has a homeostatic role on mPFC LTP, under the control of A1R, probably due to physical crosstalk between these receptors in astrocytes that ultimately alters CB1R Ca2+ signaling.
A maestro role of adenosine A2A receptors in GABAergic synapses stabilization during postnatal neuronal maturation
Publication . Sebastião, Ana M
A recent work elegantly demonstrated a role of adenosine, through the high afnity Gs-coupled A2A receptors (A2AR), on stabilization of GABAergic synapses during a critical post-natal period, which is discussed here within the context of the most recent advances on our understanding of the neurodevelopmental actions of adenosine. Neuronal activity requires a proper balance between excitatory and inhibitory inputs, GABA being the predominant inhibitory neurotransmitter in the brain. Dysfunction of GABAergic signalling, in particular in the maturation of GABAergic synapses, leads to severe neurodevelopmental diseases, which may express as drug-resistant forms of epilepsy, cognitive impairment and, often, mental retardation or even premature death.

Unidades organizacionais

Descrição

Palavras-chave

Contribuidores

Financiadores

Entidade financiadora

Fundação para a Ciência e a Tecnologia

Programa de financiamento

3599-PPCDT

Número da atribuição

PTDC/MED-FAR/30933/2017

ID