Logo do repositório
 
A carregar...
Logótipo do projeto
Projeto de investigação

Contribution of neuronal membrane and lipid raft remodelling to the pathophysiology of mesial temporal lobe epilepsy (MTLE): insight into the beneficial effects of the ketogenic diet therapy.

Autores

Publicações

Epileptiform activity influences theta-burst induced LTP in the adult hippocampus: a role for synaptic lipid raft disruption in early metaplasticity?
Publication . Carvalho Rosa, José D.; Rodrigues, Nádia C.; Cruz, Armando; Vaz, Sandra H.; Cunha-Reis, Diana
Non-epileptic seizures are identified as a common epileptogenic trigger. Early metaplasticity following seizures may contribute to epileptogenesis by abnormally altering synaptic strength and homeostatic plasticity. We now studied how in vitro epileptiform activity (EA) triggers early changes in CA1 long-term potentiation (LTP) induced by theta-burst stimulation (TBS) in rat hippocampal slices and the involvement of lipid rafts in these early metaplasticity events. Two forms of EA were induced: (1) interictal-like EA evoked by Mg2+ withdrawal and K+ elevation to 6 mM in the superfusion medium or (2) ictal-like EA induced by bicuculline (10 μM). Both EA patterns induced and LTP-like effect on CA1 synaptic transmission prior to LTP induction. LTP induced 30 min post EA was impaired, an effect more pronounced after ictal-like EA. LTP recovered to control levels 60 min post interictal-like EA but was still impaired 60 min after ictal-like EA. The synaptic molecular events underlying this altered LTP were investigated 30 min post EA in synaptosomes isolated from these slices. EA enhanced AMPA GluA1 Ser831 phosphorylation but decreased Ser845 phosphorylation and the GluA1/GluA2 ratio. Flotillin-1 and caveolin-1 were markedly decreased concomitantly with a marked increase in gephyrin levels and a less prominent increase in PSD-95. Altogether, EA differentially influences hippocampal CA1 LTP thorough regulation of GluA1/GluA2 levels and AMPA GluA1 phosphorylation suggesting that altered LTP post-seizures is a relevant target for antiepileptogenic therapies. In addition, this metaplasticity is also associated with marked alterations in classic and synaptic lipid raft markers, suggesting these may also constitute promising targets in epileptogenesis prevention.
Endogenous VIP VPAC1 receptor activation modulates hippocampal theta burst induced LTP: transduction pathways and GABAergic mechanisms
Publication . Caulino-Rocha, Ana; Rodrigues, Nádia Carolina; Ribeiro, Joaquim A.; Cunha-Reis, Diana
Vasoactive intestinal peptide (VIP), acting on both VPAC1 and VPAC2 receptors, is a key modulator of hippocampal synaptic transmission, pyramidal cell excitability and long-term depression (LTD), exerting its effects partly through modulation GABAergic disinhibitory circuits. Yet, the role of endogenous VIP and its receptors in modulation of hippocampal LTP and the involvement of disinhibition in this modulation have scarcely been investigated. We studied the modulation of CA1 LTP induced by TBS via endogenous VIP release in hippocampal slices from young-adult Wistar rats using selective VPAC1 and VPAC2 receptor antagonists, evaluating its consequence for the phosphorylation of CamKII, GluA1 AMPA receptor subunits and Kv4.2 potassium channels in total hippocampal membranes obtained from TBS stimulated slices. Endogenous VIP, acting on VPAC1 (but not VPAC2) receptors, inhibited CA1 hippocampal LTP induced by TBS in young adult Wistar rats and this effect was dependent on GABAergic transmission and relied on the integrity of NMDA and CaMKII-dependent LTP expression mechanisms but not on PKA and PKC activity. Furthermore, it regulated the autophosphorylation of CaMKII and the expression and Ser438 phosphorylation of Kv4.2 potassium channels responsible for the A-current while inhibiting phosphorylation of Kv4.2 on Thr607. Altogether, this suggests that endogenous VIP controls the expression of hippocampal CA1 LTP by regulating disinhibition through activation of VPAC1 receptors in interneurons. This may impact the autophosphorylation of CaMKII during LTP, as well as the expression and phosphorylation of Kv4.2 K+ channels at hippocampal pyramidal cell dendrites.

Unidades organizacionais

Descrição

Palavras-chave

Contribuidores

Financiadores

Entidade financiadora

Fundação para a Ciência e a Tecnologia

Programa de financiamento

9471 - RIDTI

Número da atribuição

PTDC/SAU-PUB/28311/2017

ID