Logo do repositório
 
A carregar...
Logótipo do projeto
Projeto de investigação

Sem título

Autores

Publicações

The neuroprotective action of amidated-kyotorphin on amyloid β peptide-induced Alzheimer’s disease pathophysiology
Publication . Belo, Rita F.; Martins, Margarida L. F.; Shvachiy, Liana; Costa-Coelho, Tiago; de Almeida-Borlido, Carolina; Fonseca-Gomes, João; Neves, Vera; Vicente Miranda, Hugo; Outeiro, Tiago F.; Coelho, Joana E; Xapelli, Sara; Valente, Cláudia A.; Heras, Montserrat; Bardaji, Eduard; Castanho, Miguel A. R. B.; Diógenes, Maria José; Sebastião, Ana M
Kyotorphin (KTP, l-tyrosyl-l-arginine) is an endogenous dipeptide initially described to have analgesic properties. Recently, KTP was suggested to be an endogenous neuroprotective agent, namely for Alzheimer's disease (AD). In fact, KTP levels were shown to be decreased in the cerebrospinal fluid of patients with AD, and recent data showed that intracerebroventricular (i.c.v.) injection of KTP ameliorates memory impairments in a sporadic rat model of AD. However, this administration route is far from being a suitable therapeutic strategy. Here, we evaluated if the blood-brain permeant KTP-derivative, KTP-NH2, when systemically administered, would be effective in preventing memory deficits in a sporadic AD animal model and if so, which would be the synaptic correlates of that action. The sporadic AD model was induced in male Wistar rats through i.c.v. injection of amyloid β peptide (Aβ). Animals were treated for 20 days with KTP-NH2 (32.3 mg/kg, intraperitoneally (i.p.), starting at day 3 after Aβ administration) before memory testing (Novel object recognition (NOR) and Y-maze (YM) tests). Animals were then sacrificed, and markers for gliosis were assessed by immunohistochemistry and Western blot analysis. Synaptic correlates were assessed by evaluating theta-burst induced long term potentiation (LTP) of field excitatory synaptic potentials (fEPSPs) recorded from hippocampal slices and cortical spine density analysis. In the absence of KTP-NH2 treatment, Aβ-injected rats had clear memory deficits, as assessed through NOR or YM tests. Importantly, these memory deficits were absent in Aβ-injected rats that had been treated with KTP-NH2, which scored in memory tests as control (sham i.c.v. injected) rats. No signs of gliosis could be detected at the end of the treatment in any group of animals. LTP magnitude was significantly impaired in hippocampal slices that had been incubated with Aβ oligomers (200 nM) in the absence of KTP-NH2. Co-incubation with KTP-NH2 (50 nM) rescued LTP toward control values. Similarly, Aβ caused a significant decrease in spine density in cortical neuronal cultures, and this was prevented by co-incubation with KTP-NH2 (50 nM). In conclusion, the present data demonstrate that i.p. KTP-NH2 treatment counteracts Aβ-induced memory impairments in an AD sporadic model, possibly through the rescuing of synaptic plasticity mechanisms.
The challenge of peptide proteolytic stability studies: scarce data, difficult readability, and the need for harmonization
Publication . Cavaco, Marco; Andreu, David; Castanho, Miguel A. R. B.
Proteolytic stability assessment is increasingly viewed as a fundamental component of peptide characterization, arguably of comparable importance as efficacy and toxicity data. A literature survey over the last decade reveals steady growth in the stability information available. However, it also uncovers two significant problems that hinder proper data comparison: 1) the use of different stability assays, and 2) the differences in how stability information is reported. In this Viewpoint, we present results from a database meta-analysis as well as concerns about the stability assessments published so far. We also suggest guidelines for a proper discussion between experts in the field on how to improve data readability so that peptide stability, an often-missing parameter in older literature, is adequately reported to take maximum advantage of it.
Penetrating the blood brain barrier with new peptide porphyrin conjugates having anti HIV activity
Publication . Mendonça, Diogo A.; Bakker, Mariët; Cruz-Oliveira, Christine; Neves, Vera; Angeles Jiménez, Maria; Defaus, Sira; Cavaco, Marco; Veiga, Ana Salomé; Cadima Couto, Carla Iris; Castanho, Miguel A. R. B.; Andreu, David; Todorovski, Toni
Passing through the blood-brain barrier (BBB) to treat neurological conditions is one of the main hurdles in modern medicine. Many drugs with promising in vitro profiles become ineffective in vivo due to BBB restrictive permeability. In particular, this includes drugs such as antiviral porphyrins, with the ability to fight brain-resident viruses causing diseases such as HIV-associated neurocognitive disorders (HAND). In the last two decades, BBB shuttles, particularly peptide-based ones, have shown promise in carrying various payloads across the BBB. Thus, peptide–drug conjugates (PDCs) formed by covalent attachment of a BBB peptide shuttle and an antiviral drug may become key therapeutic tools in treating neurological disorders of viral origin. In this study, we have used various approaches (guanidinium, phosphonium, and carbodiimide-based couplings) for on-resin synthesis of new peptide–porphyrin conjugates (PPCs) with BBB-crossing and potential antiviral activity. After careful fine-tuning of the synthetic chemistry, DIC/oxyma has emerged as a preferred method, by which 14 different PPCs have been made and satisfactorily characterized. The PPCs are prepared by coupling a porphyrin carboxyl group to an amino group (either N-terminal or a Lys side chain) of the peptide shuttle and show effective in vitro BBB translocation ability, low cytotoxicity toward mouse brain endothelial cells, and low hemolytic activity. Three of the PPCs, MP-P5, P4-MP, and P4-L-MP, effectively inhibiting HIV infectivity in vitro, stand out as most promising. Their efficacy against other brain-targeting viruses (Dengue, Zika, and SARS-CoV-2) is currently under evaluation, with preliminary results confirming that PPCs are a promising strategy to treat viral brain infections.

Unidades organizacionais

Descrição

Palavras-chave

Contribuidores

Financiadores

Entidade financiadora

Fundação para a Ciência e a Tecnologia

Programa de financiamento

3599-PPCDT

Número da atribuição

PTDC/BIA-VIR/29495/2017

ID