Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Influence of functional variations in genes of neurotrophins and neurotransmitter systems on the development of retinopathy of prematurityPublication . Fevereiro-Martins, Mariza; Santos, Ana Carolina; Marques-Neves, Carlos; Guimarães, Hercília; Bicho, ManuelRetinal neurodevelopment, vascularization, homeostasis, and stress response are influenced by factors such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH), and erythropoietin (EPO). As retinopathy of prematurity (ROP) is a neurovascular retinal disease, this study analyzed the contributions of NGF (rs6330), BDNF (rs7934165), TH (rs10770141), and EPO (rs507392) genetic functional polymorphisms to the modulation of hematological and biochemical parameters of the first week of life and their association with ROP development. A multicenter cohort of 396 preterm infants (gestational age < 32 weeks or birth weight < 1500 g) was genotyped using MicroChip DNA and iPlex MassARRAY® platform. Multivariate regression followed univariate assessment of ROP risk factors. NGF (GG) genotype was associated with a higher ROP risk (OR = 1.79), which increased further (OR = 2.38) when epistatic interactions with TH (allele C) and BDNF (allele G) were present. Significant circulating biomarker differences, including bilirubin, erythrocytes, monocytes, neutrophils, lymphocytes, and platelet markers, were found between ROP and non-ROP groups, with variations depending on the polymorphism. These findings suggest that NGF (rs6330) and its interactions with related genes contribute to ROP risk, providing valuable insights into the genetic and biological mechanisms underlying the disease and identifying potential predictive biomarkers.
- Retinopathy of prematurity: contribution of inflammatory and genetic factorsPublication . Fevereiro-Martins, Mariza; Guimarães, Hercília; Marques Neves, Carlos; Bicho, ManuelRetinopathy of prematurity (ROP) is a retinal vasoproliferative disorder that represents an important cause of childhood visual impairment and blindness. Although oxidative stress has long been implicated in ROP etiology, other prenatal and perinatal factors are also involved. This review focuses on current research involving inflammation and genetic factors in the pathogenesis of ROP. Increasing evidence suggests that perinatal inflammation or infection contributes to ROP pathogenesis. Cytokines and chemokines with a fundamental role in inflammatory responses and that significantly contributing to angiogenesis are analyzed. Microglia cells, the retinal-resident macrophages, are crucial for retinal homeostasis, however, under sustained pathological stimuli release exaggerated amounts of inflammatory mediators and can promote pathological neovascularization. Current modulation of angiogenic cytokines, such as treatment with antibodies to vascular endothelial growth factor (anti-VEGF), has shown efficacy in the treatment of ocular neovascularization; however, some patients are refractory to anti-VEGF agents, suggesting that other angiogenic or anti-angiogenic cytokines need to be identified. Much evidence suggests that genetic factors contribute to the phenotypic variability of ROP. Several studies have implicated the involvement of candidate genes from different signaling pathways in the development of ROP. However, a genetic component with a major impact on ROP has not yet been discovered. Most studies have limitations and did not replicate results. Future research involving bioinformatics, genomics, and proteomics may contribute to finding more genes associated with ROP and may allow discovering better solutions in the management and treatment of ROP.