Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Association of myeloperoxidase polymorphism (G463A) with cervix cancerPublication . Castelão, Cindy; Silva, Alda Pereira da; Matos, Andreia; Inácio, Ângela; Bicho, Manuel; Medeiros, Rui; Bicho, Maria ClaraCervical cancer is the fourth most common cancer affecting women worldwide, according to the latest IARC release with 528 000 new cases every year. Infection by high-risk human papillomavirus (HPV) is necessary but not sufficient for progression to cancer. Epithelial tissues, the target of HPV infection, are heavily exposed to reactive oxygen species (ROS). Hypochlorous acid (HOCl) is a very potent ROS, and it is produced by myeloperoxidase (MPO). MPO, a lysosomal enzyme expressed in polymorphonuclear neutrophils (PMN), has the potential to kill HPV transformed cells, as a component of an intercellular induced-apoptosis pathway. This enzyme catalyzes the production of HOCl in the presence of hydrogen peroxide (H2O2). The H2O2 produced by the Doderlein's bacillus will interact with MPO, contributing to the intercellular induced-apoptosis pathway. We studied a functional polymorphism in the promoter region of MPO (G463A) and how it may affect the risk of developing cervix cancer. A sample of 100 patients with invasive cervical cancer and 122 control women were genotyped for MPO polymorphism by PCR-RFLP method. The statistical method used was χ(2). We found that women with the GG genotype had lower risk for cervical cancer than the women who displayed the heterozygous genotype GA (OR = 0.546, 95 % CI = 0.315-0.939, p = 0.028, OR = 2.210, 95 % CI = 1.257-3.886, p = 0.008, respectively). The genotype that leads to a higher concentration of ROS (GG) presents itself as a protection factor in comparison to the homozygous genotype (AA). This can be explained by the interaction of HOCl and superoxide of transformed cells that will generate apoptosis-inducing hydroxyl radicals.
- Genetic modulation of HPV infection and cervical lesions: role of oxidative stress-related genesPublication . Inácio, Angela; Aguiar, Laura; Rodrigues, Beatriz; Pires, Patrícia; Ferreira, Joana; Matos, Andreia; Mendonça, Inês; Rosa, Raquel; Bicho, Manuel; Medeiros, Rui; Bicho, Maria ClaraHuman papillomavirus (HPV) infection is a necessary but not sufficient factor for the development of invasive cervical cancer (ICC) and high-grade intraepithelial lesion (HSIL). Oxidative stress is known to play a crucial role in HPV infection and carcinogenesis. In this study, we comprehensively investigate the modulation of HPV infection, HSIL and ICC, and ICC through an exploration of oxidative stress-related genes: CβS, MTHFR, NOS3, ACE1, CYBA, HAP, ACP1, GSTT1, GSTM1, and CYP1A1. Notably, the ACE1 gene emerges as a prominent factor with the presence of the I allele offering protection against HPV infection. The association of NOS3 with HPV infection is perceived with the 4a allele showing a protective effect. The presence of the GSTT1 null mutant correlates with increased susceptibility to HPV infection, HSIL and ICC, and ICC. This study also uncovers intriguing epistatic interactions among some of the genes that further accentuate their roles in disease modulation. Indeed, the epistatic interactions between the BB genotype (ACP1) and DD genotype (ECA1) were shown to increase the risk of HPV infection, and the interaction between BB (ACP1) and 0.0 (GSTT1) was associated with HPV infection and cervical lesions. These findings underscore the pivotal role of four oxidative stress-related genes in HPV-associated cervical lesions and cancer development, enriching our clinical understanding of the genetic influences on disease manifestation. The awareness of these genetic variations holds potential clinical implications.