Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Modelling the response of urban lichens to broad-scale changes in air pollution and climate
    Publication . Rocha, Bernardo; Matos, Paula; Giordani, Paolo; Piret, Lõhmus; Branquinho, Cristina; Casanelles-Abella, Joan; Aleixo, Cristiana; Deguines, Nicolas; Hallikma, Tiit; Laanisto, Lauri; Moretti, Marco; Alós Ortí, Marta; Samson, Roeland; Tryjanowski, Piotr; Pinho, Pedro
    To create more resilient cities, it is important that we understand the effects of the global change drivers in cities. Biodiversity-based ecological indicators (EIs) can be used for this, as biodiversity is the basis of ecosystem structure, composition, and function. In previous studies, lichens have been used as EIs to monitor the effects of global change drivers in an urban context, but only in single-city studies. Thus, we currently do not understand how lichens are affected by drivers that work on a broader scale. Therefore, our aim was to quantify the variance in lichen biodiversity-based metrics (taxonomic and trait-based) that can be explained by environmental drivers working on a broad spatial scale, in an urban context where local drivers are superimposed. To this end, we performed an unprecedented effort to sample epiphytic lichens in 219 green spaces across a continental gradient from Portugal to Estonia. Twenty-six broad-scale drivers were retrieved, including air pollution and bio-climatic variables, and their dimensionality reduced by means of a principal component analysis (PCA). Thirty-eight lichen metrics were then modelled against the scores of the first two axes of each PCA, and their variance partitioned into pollution and climate components. For the first time, we determined that 15% of the metric variance was explained by broad-scale drivers, with broad-scale air pollution showing more importance than climate across the majority of metrics. Taxonomic metrics were better explained by air pollution, as expected, while climate did not surpass air pollution in any of the trait-based metric groups. Consequently, 85% of the metric variance was shown to occur at the local scale. This suggests that further work is necessary to decipher the effects of climate change. Furthermore, although drivers working within cities are prevailing, both spatial scales must be considered simultaneously if we are to use lichens as EIs in cities at continental to global scales.
  • Incorporating biotic interactions to better model current and future vegetation of the maritime Antarctic
    Publication . Rocha, Bernardo; Pinho, Pedro; Giordani, Paolo; Concostrina-Zubiri, Laura; Vieira, Gonçalo; Pina, Pedro; Branquinho, Cristina; Matos, Paula
    Maritime Antarctica’s harsh abiotic conditions forged simple terrestrial ecosystems, mostly constituted of bryophytes, lichens, and vascular plants. Though biotic interactions are, together with abiotic factors, thought to help shape this ecosystem, influencing species’ distribution and, indirectly, mediating their response to climate, the importance of these interactions is still fairly unknown. We modeled current and future abundance patterns of bryophytes, lichens, and vascular plants, accounting for biotic interactions and abiotic drivers, along a climatic gradient in maritime Antarctica. The influence of regional climate and other drivers was modeled using structural equation models, with and without biotic interactions. Models with biotic interactions performed better; the one offering higher ecological support was used to estimate current and future spatial distributions of vegetation. Results suggest that plants are confined to lower elevations, negatively impacting bryophytes and lichens, whereas at higher elevations both climate and other drivers influence bryophytes and lichens. Our findings strongly support the use of biotic interactions to predict the spatial distribution of Antarctic vegetation.
  • Ant functional structure and diversity changes along a post-grazing succession in Mediterranean oak woodlands
    Publication . Frasconi Wendt, Clara; Nunes, Alice; Köbel, Melanie; Verble, Robin; Matos, Paula; Boieiro, Mário; Branquinho, Cristina
    Grazing exclusion may be used to promote the recovery of disturbed ecosystems. A promising way for the evaluation of its effectiveness is through the monitoring of key biological groups, particularly those more responsive to disturbance and playing key roles in ecosystem functioning. Ants have been used as ecological indicators as they are abundant, diverse and sensitive to environmental changes. Here, we aimed to evaluate changes in ant taxonomic and functional structure and diversity, using functional groups, along a post-grazing succession in a Mediterranean oak woodland and to understand which environmental variables drive them. The post-grazing succession comprised a chronosequence of grazing excluded sites for 8, 12 and 18 years and a grazed control site. We found that ant species richness, functional structure and diversity increased with years since grazing exclusion: Generalist/Opportunist and the Hot Climate specialists increased in the 18 years grazing excluded site, while the Cryptic Species group increased in the 12 years grazing excluded site. Yet, their responses were not linear over time. Time since grazing exclusion and vegetation structure explained differences in ant taxonomic and functional structure and diversity. The Invasive/Exotic group dominated in all sites, except in the longest excluded site, where it occurred in the lowest proportion. The invasive Argentine ant dominated the grazed site, where it may have led to ant taxonomic and functional homogenization. Our results suggest that the time and changes in habitat structure may favour the recovery of ant biodiversity, although the presence of the invasive Argentine ant species may have slowed it down.