Repository logo
 
Loading...
Profile Picture
Person

de Oliveira Madeira, José Eduardo

Search Results

Now showing 1 - 5 of 5
  • The first Ichneumonid fossil from the Early Pleistocene of Madeira Island (Portugal)
    Publication . Góis-Marques, Carlos A.; JESUS, JOSÉ; DE SEQUEIRA, MIGUEL MENEZES; Madeira, José
    In oceanic islands, well age-constrained deposits containing arthropod somatofossils (body fossils) are rare. However, when available, these are important for providing empirical and independent minimum ages for molecular phylogenetic dating and complementary data on taxonomy, evolution and palaeobiogeography information of the biological groups found as fossils. This is especially important for taxa that speciated within oceanic islands, many becoming single island endemics (SIE). Recently, associated with a 1.3 Ma (Calabrian) fluvial and lacustrine sedimentary deposit from Porto da Cruz in Madeira Island (Fig. 1), a wing, putatively identified as Hymenoptera, was found. Here we describe this wing fossil as belonging to Ichneumonidae, a group with ca. 30% of SIE in Madeira Island. Moreover, this is the first somatofossil of ichneumonid parasitic wasps found in Madeira Island and in Macaronesian islands (i.e. Azores, Madeira, Canaries and Cabo Verde). Since the 19th century, oceanic island attracted several naturalists due to the high probability of finding taxonomical novelties (e.g. Vieira, 2005). Darwin (1859) amplified this interest, as oceanic islands biota presented a central role to explain evolution. Today oceanic islands became the ideal locations to study evolution, biogeography and ecology (e.g. Whittaker et al., 2017). Madeira Island (Central Atlantic Ocean; Fig. 1), geologically a shield volcano of 7 Ma (Ramalho et al., 2015 and references therein), is considered an insect diversity hotspot where 3019 species and subspecies are known, of which 665 are SIE (Borges et al., 2008). This diversity is most probably explained by stepping-stone through palaeo-Macaronesian islands and isolation (Triantis et al., 2010; Fernández-Palacios et al., 2011). Palaeoentomological records are rare in Madeira. The only known record is from the Mio-Pleistocene deposit of São Jorge (see Góis-Marques et al., 2018), where Heer (1857) described an extinct coleopteran, Laparocerus wollastoni, based on fossilized elytra. Machado (2006) in a taxonomic review of Laparocerus considers this taxon as nomen dubium, due to the missing holotype and the impossibility of reapraising its taxonomy. On other Macaronesian archipelagos, especially in the Canaries Islands, several deposits with insect ichnofossils have been described (e.g. Edwards & Meco, 2000; Meco et al., 2011; La Roche et al., 2014). In Azores only xylophagous ichnoentomological traces in charcoal wood are known (Góis-Marques et al., 2019b). The fossil wing was found within laminated lacustrine fine sandstone, associated with plant fossils. The sediments are constrained by two 40Ar-39Ar dates to 1.3 Ma, Calabrian stage (Góis-Marques et al., 2019a). Fossils are kept in the palaeobotanical collection at the Madeira University herbarium (UMad-P) with the numbers UMad-P500a (part) and UMad-P500b (counter-part). The wing fossil was studied under a stereo microscope, and its identification was performed through several sources (e.g. Goulet & Huber, 1993) and specific guidebooks (Prehn & Raper, 2016). Wing description follows the Comstock-Needham system as described by Quicke (2015)
  • The Quaternary plant fossil record from the volcanic Islands of Azores (Portugal, North Atlantic Ocean): a review
    Publication . Góis-Marques, Carlos A.; De Nascimento, Lea; Menezes de Sequeira, Miguel; Fernández-Palacios, Jose Maria; Madeira, José
    Plant fossils are known from the Azores Islands, yet poorly studied. We present a comprehensive bibliographical review for the archipelago. A first pre-scientific reference dates from late fifteenth century, while the first scientific description was reported in 1821, accounting for trunks in pyroclastic units and silicified plants within hydrothermal deposits. Throughout the second-half of the nineteenth century and the first-half of the twentieth century, prospection by naturalists and geological mapping work, led to the discovery and description of plant fossils in most islands. From the 1970s onwards, the taxonomic interest ceased, and plant fossils were used mainly for 14C dating. Recently, sediment cores from lakes and peatlands were used for palaeoecological reconstructions and to measure anthropogenic impacts. Generally, plant fossils are younger than 50 ka, although older fossils may exist. Azorean plant fossils include somatofossils of leaves, stems, logs and seeds preserved as impressions, compressions, adpressions, permineralizations, lava tree casts and mummifications. The taphonomy of macrofloral elements is usually related to explosive volcanic activity, while palynological record is associated with lake sediments and peat bogs. The persistence in palaeobotanical and palaeopalynological studies will decisively contribute to disentangle the paleodiversity, palaeoecology, and add crucial information on insular plant phylogeny and biogeography.
  • Tracing insular woodiness in giant Daucus (s.l.) fruit fossils from the Early Pleistocene of Madeira Island (Portugal)
    Publication . Góis-Marques, Carlos A.; De Nascimento, Lea; Fernández-Palacios, Jose Maria; Madeira, José; Menezes de Sequeira, Miguel
    Plants on oceanic islands can evolve insular syndromes such as secondary woodiness, a generalized trend found in island floras worldwide. This phenomenon occurs through evolution in situ. It is triggered by ecological and physiological stimuli that transform herbaceous annuals into woody perennials. However, well-dated and informative fossils that could help track and frame the evolution of this syndrome are lacking. Remarkably, in Madeira Island (Portugal), there are good examples of Apiaceae that evolved secondary woodiness, like the giant neoendemic Melanoselinum (≡ Daucus). Apiaceae has a very scarce fossil record, despite being a cosmopolitan family and an economically important crop. Here we describe the oldest Daucus s.l. fossil known to date and the first fossil evidence of a plant with insular woodiness. The fossils are preserved as mummified/compressed mericarps within 1.3-million year-old fluvio-lacustrine sediments of the Funchal unit, Upper Volcanic complex, near Porto da Cruz. We assign them to the extant neoendemic species Melanoselinum (≡ Daucus) decipiens. The mericarp morphology shows remarkable stasis since the Calabrian stage of the Early Pleistocene. Our results demonstrate that in the Madeiran Daucinae clade, insular woodiness developed at least 1.3 million years ago, indicating a coeval or earlier immigration to Madeira Island of a Daucus sp. Our results reinforce the role of palaeobotanical research in oceanic islands, supported by stratigraphy and geochronology studies, as a key element for the understanding of plant palaeobiogeography, ecology and evolution worldwide. We expect this contribution to shed light on the evolutionary origins of carrots, and related plant groups, an important element of human food, and to better comprehend the evolution of plant insular woodiness.
  • Oceanic Island forests buried by Holocene (Meghalayan) explosive eruptions: palaeobiodiversity in pre-anthropic volcanic charcoal from Faial Island (Azores, Portugal) and its palaeoecological implications
    Publication . Góis-Marques, Carlos A.; Rubiales, Jose M.; de Nascimento, Lea; Menezes de Sequeira, Miguel; Fernández-Palacios, Jose Maria; Madeira, José
    In Faial Island (Azores Archipelago, North Atlantic Ocean), charcoalified and mummified wood fossils have been reported within late Holocene (Meghalayan) pyroclastic deposits from the Caldeira Formation. Due to their recent age, a detailed study conveys a snapshot into Azorean palaeophytodiversity and palaeovegetation, ca. 7–5 centuries before the arrival of Portuguese settlers to the Azores Islands. Here we provide the first detailed anatomical and taxonomical study of these wood fossils. In total, 41 samples were collected from seven localities, mainly from a ~1200 yr BP ignimbrite. Field work revealed autochthonous and paraautochthonous assemblages, with tree trunks in upright position. The anatomical study of the fossil woods resulted in the identification of Juniperus brevifolia, Laurus azorica, Myrsine retusa, Morella faya, Picconia azorica, Prunus lusitanica subsp. azorica, and Vaccinium cylindraceum. Two fossil assemblages are comparable to the proposed potential natural vegetation (PNV) for the Azores. Surprisingly, P. lusitanica subsp. azorica was the second most abundant fossil wood suggesting that this tree was more abundant in a recent past in Faial Island and probably in the archipelago. This is corroborated by historical accounts, and its modern scarcity was certainly anthropically driven. Identifying Holocene plant macrofossils is essential to properly reconstruct oceanic islands terrestrial palaeoecosystems, especially where forests with high percentage of entomophilous taxa are underrepresented in palaeopalynological limnic record. Further work is necessary to reconstruct Faial Island and Azores archipelago palaeovegetation which is essential to provide an ecosystem base-line for restoration and management.
  • The bicentenary of Georg Hartung, a German pioneer geologist, explorer, and illustrator
    Publication . Góis-Marques, Carlos A.; Menezes de Sequeira, Miguel; Madeira, José
    We present a tribute to Georg Friedrich Karl Hartung (1821–1891), a less-known, non-academic German geologist, on his 200th birthday anniversary. Influenced by eminent 19th century scientific personalities, such as Oswald Heer, Charles Lyell, and Alexander von Humboldt, he performed pioneer geological observations and sampling in the Azores, Madeira, and Canary Islands volcanic archipelagos. Later in his life, he travelled to the USA and explored the Scandinavian countries. His scientific endeavours were published in several books and papers, many of them co-authored by academic German geologists and palaeontologists. His works on Macaronesia are deemed as classics, and many have been enriched by his detailed geological illustrations.