Browsing by Author "Valente, Cláudia A."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Age-related impact of social isolation in mice: young vs middle-agedPublication . Magalhães, Daniela M; Mampay, Myrthe; Sebastião, Ana M; Sheridan, Graham K.; Valente, Cláudia A.Social isolation is a chronic mild stressor and a significant risk factor for mental health disorders. Herein we explored the impact of social isolation on depression- and anxiety-like behaviours, as well as spatial memory impairments, in middle-aged male mice compared to post-weaning mice. We aimed to quantify and correlate social isolation-induced behaviour discrepancies with changes in hippocampal glial cell reactivity and pro-inflammatory cytokine levels. Post-weaning and middle-aged C57BL7/J6 male mice were socially isolated for a 3-week period and behavioural tests were performed on the last five days of isolation. We found that 3 weeks of social isolation led to depressive-like behaviour in the forced swim test, anxiety-like behaviour in the open field test, and spatial memory impairment in the Morris water maze paradigm in middle-aged male mice. These behavioural alterations were not observed in male mice after post-weaning social isolation, indicating resilience to isolation-mediated stress. Increased Iba-1 expression and NLRP3 priming were both observed in the hippocampus of socially isolated middle-aged mice, suggesting a role for microglia and NLRP3 pathway in the detrimental effects of social isolation on cognition and behaviour. Young socially isolated mice also demonstrated elevated NLRP3 priming compared to controls, but no differences in Iba-1 levels and no significant changes in behaviour. Ageing-induced microglia activation and enhancement of IL-1β, TNF-α and IL-6 proinflammatory cytokines, known signs of a chronic low-grade inflammatory state, were also detected. Altogether, data suggest that social isolation, in addition to inflammaging, contributes to stress-related cognitive impairment in middle-aged mice.
- BDNF modulates glycine uptake in hippocampal synaptosomes by decreasing membrane insertion of glycine transporter 2Publication . Aroeira, Rita I.; Vaz, Sandra H.; Sebastião, Ana M; Valente, Cláudia A.Glycine transporter 2 (GlyT2) is localized in the nerve terminals of glycinergic neurons, promoting glycine uptake and ensuring the refilling of glycinergic vesicles. Brain-derived neurotrophic factor (BDNF) activates its high affinity TrkB receptors, which occur in two isoforms, full length (TrkB-FL) and truncated (TrkB-T1/T2). After BDNF binding to TrkB receptor, several intracellular cascades are triggered, specifically PLC, Akt and MAPK signalling pathways. We herein show that BDNF decreases [(3)H]glycine uptake mediated by GlyT2 in isolated nerve endings (synaptosomes) obtained from rat hippocampus, by reducing the maximum velocity (Vmax) of transport while not influencing the transporter affinity constant (Km) for glycine. Western Blot analysis detected both TrkB receptor isoforms in the synaptosomes but the BDNF effect seems to be mediated by TrkB-FL since: 1) the tyrosine kinase inhibitor, k252a, prevented the effect of BDNF, and 2) the effect of BDNF was lost in the presence of specific inhibitors of TrkB signalling pathways, namely U73122, LY294002 and U0126 (inhibitors of PLC, Akt and MAPK pathways, respectively). Monensin, a transporter recycling inhibitor, prevented the BDNF action upon glycine uptake, suggesting that BDNF reduces GlyT2 insertion in the plasma membrane. It is concluded that BDNF effect upon glycine uptake into glycinergic nerve terminals requires the activation of the TrkB-FL receptor and its canonical signalling pathways and occurs by inhibiting GlyT2 membrane incorporation.
- BDNF, via truncated TrkB receptor, modulates GlyT1 and GlyT2 in astrocytesPublication . Aroeira, Rita I.; Sebastião, Ana M; Valente, Cláudia A.Glycine transporters (GlyT), GlyT1 and GlyT2, are responsible for the termination of glycine-mediated synaptic activity through removal of neurotransmitter from synaptic cleft. Brain-derived neurotrophic factor (BDNF) activates its high affinity tropomyosin-related kinase (Trk) receptors, namely TrkB, which includes full length (TrkB-FL) and truncated (TrkB-T) isoforms. In this article we evaluated the influence of BDNF upon the activity of glycine transporters in astrocytes. We report that BDNF decreases GlyT1- and GlyT2- mediated [(3) H]glycine transport in primary cultures of astrocytes from rat cerebral cortex. BDNF decreased Vmax but not Km values of transport, which suggests that BDNF induces transporter internalization. Accordingly, dynasore, an inhibitor of dynamin/clathrin-dependent endocytosis, prevented the influence of BDNF upon GlyT-mediated transport. While quantifying mRNA and protein levels, we detected a predominance of truncated isoforms over the TrkB-FL receptor. The effect of BDNF was not abolished by specific inhibitors of PLCγ, PI3K and MAPK, indicating that it did not occur through TrkB-FL canonical pathways. However, BDNF action was lost in the presence of a Rho family-specific blocker (toxin B), a signaling pathway that has been associated to TrkB-T1. Furthermore, the effect of BDNF was abolished upon TrkB-T knockdown in astrocytes by RNA interference. Immunofluorescence assays confirmed an increased GlyT expression in endosomes upon BDNF incubation, which was prevented in the presence of either dynasore or toxin B. We conclude that BDNF, acting on TrkB-T1 receptors, inhibits glycine uptake in astrocytes by promoting GlyT internalization through a Rho-GTPase activity dependent mechanism.
- Chemogenetics with PSAM4-GlyR decreases excitability and epileptiform activity in epileptic hippocampusPublication . Gonzalez-Ramos, Ana; Berglind, Fredrik; Kudláček, Jan; Ribeiro Rocha, Elza; Melin, Esbjörn; Sebastião, Ana M; Valente, Cláudia A.; Ledri, Marco; Andersson, My; Kokaia, MerabDespite the availability of new drugs on the clinics in recent years, drug-resistant epilepsy remains an unresolved challenge for healthcare, and one-third of epilepsy patients remain refractory to anti-seizure medications. Gene therapy in experimental models has emerged as effective treatment targeting specific neuronal populations in the epileptogenic focus. When combined with an external chemical activator using chemogenetics, it also becomes an "on-demand" treatment. Here, we evaluate a targeted and specific chemogenetic therapy, the PSAM/PSEM system, which holds promise as a potential candidate for clinical application in treating drug-resistant epilepsy. We show that the inert ligand uPSEM817, which selectively activates the chloride-permeable channel PSAM4-GlyR, effectively reduces the number of depolarization-induced action potentials in vitro. This effect is likely due to the shunting of depolarizing currents, as evidenced by decreased membrane resistance in these cells. In organotypic slices, uPSEM817 decreased the number of bursts and peak amplitude of events of spontaneous epileptiform activity. Although administration of uPSEM817 in vivo did not significantly alter electrographic seizures in a male mouse model of temporal lobe epilepsy, it did demonstrate a strong trend toward reducing the frequency of interictal epileptiform discharges. These findings indicate that PSAM4-GlyR-based chemogenetics holds potential as an anti-seizure strategy, although further refinement is necessary to enhance its efficacy.
- Dysregulation of TrkB receptors and BDNF function by amyloid-β peptide is mediated by calpainPublication . Jerónimo-Santos, André; Vaz, Sandra H.; Parreira, Sara; Lerias, Sofia; Caetano, António P.; Buée-Scherrer, Valérie; Castrén, Eero; Valente, Cláudia A.; Blum, David; Sebastião, Ana M; Diógenes, Maria JoséBrain-derived neurotrophic factor (BDNF) and its high-affinity full-length (FL) receptor, TrkB-FL, play a central role in the nervous system by providing trophic support to neurons and regulating synaptic plasticity and memory. TrkB and BDNF signaling are impaired in Alzheimer's disease (AD), a neurodegenerative disease involving accumulation of amyloid-β (Aβ) peptide. We recently showed that Aβ leads to a decrease of TrkB-FL receptor and to an increase of truncated TrkB receptors by an unknown mechanism. In the present study, we found that (1) Aβ selectively increases mRNA levels for the truncated TrkB isoforms without affecting TrkB-FL mRNA levels, (2) Aβ induces a calpain-mediated cleavage on TrkB-FL receptors, downstream of Shc-binding site, originating a new truncated TrkB receptor (TrkB-T') and an intracellular fragment (TrkB-ICD), which is also detected in postmortem human brain samples, (3) Aβ impairs BDNF function in a calpain-dependent way, as assessed by the inability of BDNF to modulate neurotransmitter (GABA and glutamate) release from hippocampal nerve terminals, and long-term potentiation in hippocampal slices. It is concluded that Aβ-induced calpain activation leads to TrkB cleavage and impairment of BDNF neuromodulatory actions.
- Ex vivo model of epilepsy in organotypic slices : a new tool for drug screeningPublication . Magalhães, Daniela; Pereira, Noémia; Rombo, Diogo M.; Beltrão-Cavacas, Cláudia; Sebastião, Ana M; Valente, Cláudia A.Background: Epilepsy is a prevalent neurological disorder worldwide. It is characterized by an enduring predisposition to generate seizures and its development is accompanied by alterations in many cellular processes. Organotypic slice cultures represent a multicellular environment with the potential to assess biological mechanisms, and they are used as a starting point for refining molecules for in vivo studies. Here, we investigated organotypic slice cultures as a model of epilepsy. Methods: We assessed, by electrophysiological recordings, the spontaneous activity of organotypic slices maintained under different culture protocols. Moreover, we evaluated, through molecular-based approaches, neurogenesis, neuronal death, gliosis, expression of proinflammatory cytokines, and activation of NLRP3 inflammasome (nucleotide-binding, leucine-rich repeat, pyrin domain) as biomarkers of neuroinflammation. Results: We demonstrated that organotypic slices, maintained under a serum deprivation culture protocol, develop epileptic-like activity. Furthermore, throughout a comparative study with slices that do not depict any epileptiform activity, slices with epileptiform activity were found to display significant differences in terms of inflammation-related features, such as (1) increased neuronal death, with higher incidence in CA1 pyramidal neurons of the hippocampus; (2) activation of astrocytes and microglia, assessed through western blot and immunohistochemistry; (3) upregulation of proinflammatory cytokines, specifically interleukin-1β (IL-1β), interleukin-6, and tumor necrosis factor α, revealed by qPCR; and (4) enhanced expression of NLRP3, assessed by western blot, together with increased NLRP3 activation, showed by IL-1β quantification. Conclusions: Thus, organotypic slice cultures gradually deprived of serum mimic the epileptic-like activity, as well as the inflammatory events associated with in vivo epilepsy. This system can be considered a new tool to explore the interplay between neuroinflammation and epilepsy and to screen potential drug candidates, within the inflammatory cascades, to reduce/halt epileptogenesis.
- A model of epileptogenesis in rhinal cortex-hippocampus organotypic slice culturesPublication . Valente, Cláudia A.; Meda, Francisco; Carvalho, Mafalda; Sebastião, Ana MOrganotypic slice cultures have been widely used to model brain disorders and are considered excellent platforms for evaluating a drug's neuroprotective and therapeutic potential. Organotypic slices are prepared from explanted tissue and represent a complex multicellular ex vivo environment. They preserve the three-dimensional cytoarchitecture and local environment of brain cells, maintain the neuronal connectivity and the neuron-glia reciprocal interaction. Hippocampal organotypic slices are considered suitable to explore the basic mechanisms of epileptogenesis, but clinical research and animal models of epilepsy have suggested that the rhinal cortex, composed of perirhinal and entorhinal cortices, play a relevant role in seizure generation. Here, we describe the preparation of rhinal cortex-hippocampus organotypic slices. Recordings of spontaneous activity from the CA3 area under perfusion with complete growth medium, at physiological temperature and in the absence of pharmacological manipulations, showed that these slices depict evolving epileptic-like events throughout time in culture. Increased cell death, through propidium iodide uptake assay, and gliosis, assessed with fluorescence-coupled immunohistochemistry, was also observed. The experimental approach presented highlights the value of rhinal cortex-hippocampus organotypic slice cultures as a platform to study the dynamics and progression of epileptogenesis and to screen potential therapeutic targets for this brain pathology.
- Selective modulation of epileptic tissue by an adenosine A3 receptor‐activating drugPublication . Ghosh, Anwesha; Ribeiro Rodrigues, Leonor; Ruffolo, Gabriele; Alfano, Veronica; Domingos, Cátia; Rei, Nádia; Tosh, Dilip K.; Rombo, Diogo M.; Morais, Tatiana P.; Valente, Cláudia A.; Xapelli, Sara; Bordadágua, Beatriz; Rainha Campos, Alexandre; Bentes, Carla; Aronica, Eleonora; Diógenes, Maria José; Vaz, Sandra H.; Ribeiro, Joaquim A.; Palma, Eleonora; Jacobson, Kenneth A.; Sebastião, Ana MBackground and purpose: Adenosine, through the A1 receptor (A1R), is an endogenous anticonvulsant. The development of adenosine receptor agonists as antiseizure medications has been hampered by their cardiac side effects. A moderately A1R-selective agonist, MRS5474, has been reported to suppress seizures without considerable cardiac action. Hypothesizing that this drug could act through other than A1R and/or through a disease-specific mechanism, we assessed the effect of MRS5474 on the hippocampus. Experimental approach: Excitatory synaptic currents, field potentials, spontaneous activity, [3H]GABA uptake and GABAergic currents were recorded from rodent or human hippocampal tissue. Alterations in adenosine A3 receptor (A3R) density in human tissue were assessed by Western blot. Key results: MRS5474 (50-500 nM) was devoid of effect upon rodent excitatory synaptic signals in hippocampal slices, except when hyperexcitability was previously induced in vivo or ex vivo. MRS5474 inhibited GABA transporter type 1 (GAT-1)-mediated γ-aminobutyric acid (GABA) uptake, an action not blocked by an A1R antagonist but blocked by an A3R antagonist and mimicked by an A3R agonist. A3R was overexpressed in human hippocampal tissue samples from patients with epilepsy that had focal resection from surgery. MRS5474 induced a concentration-dependent potentiation of GABA-evoked currents in oocytes micro-transplanted with human hippocampal membranes prepared from epileptic hippocampal tissue but not from non-epileptic tissue, an action blocked by an A3R antagonist. Conclusion and implications: We identified a drug that activates A3R and has selective actions on epileptic hippocampal tissue. This underscores A3R as a promising target for the development of antiseizure medications.
- The neuroprotective action of amidated-kyotorphin on amyloid β peptide-induced Alzheimer’s disease pathophysiologyPublication . Belo, Rita F.; Martins, Margarida L. F.; Shvachiy, Liana; Costa-Coelho, Tiago; de Almeida-Borlido, Carolina; Fonseca-Gomes, João; Neves, Vera; Vicente Miranda, Hugo; Outeiro, Tiago F.; Coelho, Joana E; Xapelli, Sara; Valente, Cláudia A.; Heras, Montserrat; Bardaji, Eduard; Castanho, Miguel A. R. B.; Diógenes, Maria José; Sebastião, Ana MKyotorphin (KTP, l-tyrosyl-l-arginine) is an endogenous dipeptide initially described to have analgesic properties. Recently, KTP was suggested to be an endogenous neuroprotective agent, namely for Alzheimer's disease (AD). In fact, KTP levels were shown to be decreased in the cerebrospinal fluid of patients with AD, and recent data showed that intracerebroventricular (i.c.v.) injection of KTP ameliorates memory impairments in a sporadic rat model of AD. However, this administration route is far from being a suitable therapeutic strategy. Here, we evaluated if the blood-brain permeant KTP-derivative, KTP-NH2, when systemically administered, would be effective in preventing memory deficits in a sporadic AD animal model and if so, which would be the synaptic correlates of that action. The sporadic AD model was induced in male Wistar rats through i.c.v. injection of amyloid β peptide (Aβ). Animals were treated for 20 days with KTP-NH2 (32.3 mg/kg, intraperitoneally (i.p.), starting at day 3 after Aβ administration) before memory testing (Novel object recognition (NOR) and Y-maze (YM) tests). Animals were then sacrificed, and markers for gliosis were assessed by immunohistochemistry and Western blot analysis. Synaptic correlates were assessed by evaluating theta-burst induced long term potentiation (LTP) of field excitatory synaptic potentials (fEPSPs) recorded from hippocampal slices and cortical spine density analysis. In the absence of KTP-NH2 treatment, Aβ-injected rats had clear memory deficits, as assessed through NOR or YM tests. Importantly, these memory deficits were absent in Aβ-injected rats that had been treated with KTP-NH2, which scored in memory tests as control (sham i.c.v. injected) rats. No signs of gliosis could be detected at the end of the treatment in any group of animals. LTP magnitude was significantly impaired in hippocampal slices that had been incubated with Aβ oligomers (200 nM) in the absence of KTP-NH2. Co-incubation with KTP-NH2 (50 nM) rescued LTP toward control values. Similarly, Aβ caused a significant decrease in spine density in cortical neuronal cultures, and this was prevented by co-incubation with KTP-NH2 (50 nM). In conclusion, the present data demonstrate that i.p. KTP-NH2 treatment counteracts Aβ-induced memory impairments in an AD sporadic model, possibly through the rescuing of synaptic plasticity mechanisms.
