Browsing by Author "Sousa, Raúl Bruno de"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Effect of wood aging on wine mineral composition and 87Sr/86Sr isotopic ratioPublication . Kaya, Ayse D.; Sousa, Raúl Bruno de; Curvelo-Garcia, A.S.; Ricardo-da-Silva, Jorge M.; Catarino, SofiaThe evolution of mineral composition and wine strontium isotopic ratio 87Sr/86Sr (Sr IR) during wood aging were investigated. A red wine was aged in stainless steel tanks with French oak staves (Quercus sessiliflora Salisb.), with three industrial scale replicates. Sampling was carried out after 30, 60, and 90 days of aging, and the wines were evaluated in terms of general analysis, phenolic composition, total polysaccharides, multielement composition, and Sr IR. Li, Be, Mg, Al, Sc, Ti, V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Mo, Sb, Cs, Ba, Pr, Nd, Sm, Eu, Dy, Ho, Er, Yb, Lu, Tl, and Pb elements and 87Sr/86Sr were determined by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and Na, K, Ca, and Fe by flame atomic absorption spectrometry (FAAS). Two-way ANOVA was applied to assess wood aging and time effect on Sr IR and mineral composition. Wood aging resulted in significantly higher concentrations of Mg, V, Co, Ni, and Sr. At the end of the aging period, wine exhibited statistically identical Sr IR compared to control. Study suggests that wood aging does not affect 87Sr/86Sr, not precluding the use of this parameter for wine traceability purposes
- Mineral composition through soil-wine system of portuguese vineyards and its potential for wine traceabilityPublication . Catarino, Sofia; Madeira, Manuel; Monteiro, Fernando; Caldeira, Ilda; Sousa, Raúl Bruno de; Curvelo-Garcia, A.S.The control of geographic origin is one of a highest priority issue regarding traceability and wine authenticity. The current study aimed to examine whether elemental composition can be used for the discrimination of wines according to geographical origin, taking into account the effects of soil, winemaking process, and year of production. The elemental composition of soils, grapes, musts, and wines from three DO (Designations of Origin) and for two vintage years was determined by using the ICP-MS semi-quantitative method, followed by multivariate statistical analysis. The elemental composition of soils varied according to geological formations, and for some elements, the variation due to soil provenance was also observed in musts and wines. Li, Mn, Sr and rare-earth elements (REE) allowed wine discrimination according to vineyard. Results evidenced the influence of winemaking processes and of vintage year on the wine’s elemental composition. The mineral composition pattern is transferred through the soil-wine system, and differences observed for soils are reflected in grape musts and wines, but not for all elements. Results suggest that winemaking processes and vintage year should be taken into account for the use of elemental composition as a tool for wine traceability. Therefore, understanding the evolution of mineral pattern composition from soil to wine, and how it is influenced by the climatic year, is indispensable for traceability purposes
