Browsing by Author "Santos, D."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Biochemical and photochemical feedbacks of acute Cd toxicity in Juncus acutus seedlings: The role of non-functional Cd-chlorophyllsPublication . Santos, D.; Duarte, Bernardo; Caçador, IsabelThe increasing metal pollution in salt marshes and its influence on the plants that inhabit these ecosystems, has become a major concern with serious implications on the species establishment. Juncus acutus is a highly common halophyte specie in Portuguese marshes. Seeds from his specie were exposed to a range of different Cd concentrations (0.05, 0.1, 0.5 and 1 μM) in order to evaluate the effects of acute Cd stress on seed germination and growth as well as on seedling pigment composition, photosynthetic apparatus and oxidative stress biomarkers. Seedling length was higher than in control in every Cd treatment, however biomass showed a decrease. It was also observed that increasing Cd treatments, lead to a proportional increase in the Cd tissue concentration. Also the Cd-substituted chlorophylls showed an increase with increasing Cd doses that were applied. This substitution results in a non-functional chlorophyll molecule, highly unstable under moderate light intensities which inevitably reduces the efficiency of the LHC II. As consequence, there was a decrease in the use-efficiency of the harvested energy, leading to a decay in the photosynthetic capacity and energy accumulation, which was dissipated as heat. As for the antioxidant enzymes, SOD and APX presented higher activity, responding to increasing cadmium concentrations. Thus, becomes evident that Cd affects negatively, both biochemically and photochemically, the establishment by seed process of J. acutus highlighting the potential of the use of this specie seed as potential sentinel and ecotoxicity test in extreme conditions.
- As comunidades de jurema-preta (Mimosa tenuiflora (Willd.) Poir.) e pau-branco (Cordia oncocalix Allemão), na sucessão secundária progressiva de Caatinga na região Noroeste do Ceará, BrasilPublication . Pereira, M.; Braga, P.E.T.; Santos, D.; Ribeiro, S.; Guiomar, N.
- Ecophysiological constraints of two invasive plant species under a saline gradient: Halophytes versus glycophytesPublication . Duarte, Bernardo; Santos, D.; Marques, J. C.; Caçador, IsabelSalt marsh environments are harsh environments where salinity comprises one of the most important species distribution shaping factor, presenting sediment salinities from 0 to 855 mM (0–50 ppt). Invasive species have often a high colonizing potential, due to its high plasticity and adaptation ability. Spartina patens is an invasive species already spread along several Mediterranean countries, like France and Spain. Cyperus longus is typically a freshwater species that has been spreading across the Mediterranean. In order to evaluate the ecophysiological fitness of these species, mesocosmos trials were performed subjecting both species to increasing realistic salinity levels and their photochemical and biochemical feedback was evaluated. Both species presented very different behaviours. S. patens appears to be insensitive to salt stress, mostly due to elevated proline concentrations in its leaves allowing it to maintain its osmotic balance, and thus preventing the damaging of its photochemical mechanisms. C. longus, on the other hand, was highly affected by elevated salt levels mostly due to the lack of osmotic balance driven by an incapacity to counteract the elevated ionic strength of the external medium by osmocompatible solutes. S. patens is physiologically highly adapted to saline environments and thus is capable to colonize all the marsh saline environments, while C. longus appears to be an opportunistic invader colonizing the marsh during periods of lower salinities typical from rainy seasons.
- Identification of NLR proteins in the coffee genotype HDT 8232/2 challenged with Hemileia vastatrix (host resistance) and Uromyces vignae (nonhost resistance)Publication . Tavares, S.; Azinheira, H.; Santos, D.; Batista, D.; Várzea, V.; Talhinhas, P.; Silva, M.C.
- Impact of heat and cold events on the energetic metabolism of the C3 halophyte Halimione portulacoidesPublication . Duarte, Bernardo; Santos, D.; Marques, J. C.; Caçador, IsabelAccording to the newest predictions, it is expected that the Mediterranean systems experience more frequent and longer heat and cold treatments events. Salt marshes will be no exception. Halimione portulacoides is a widely distributed halophyte highly adapted to harsh environments. Plants exposed to heat stress showed a reduction in the maximum electron transport rates and increase in the rate of RC closure, as indicated by the increase in M0. Alongside there was also a reduction in the quinone pool size while compared to the plants maintained in the control condition. In contrast plants exposed to low temperatures didn't show any signs of damage on the ETC. Heat-exposed individuals experienced a reduction of connectivity between the PS II antennae with simultaneous inhibition of the electron transport. This was more evident in the donor side of the PS II, Being this a consequence of the damages in the oxygen-evolving complex. Also if both PS I and PS II energy fluxes are observed, there are evident differences in the thermal tolerance of both photosystems. While compared to the control group, cold exposed plants showed an increased PS I efficiency (δR0) indicating a tolerance of this photosystem to low temperatures. Nevertheless, the excessive redox potential generated by light harvesting and inefficient processing was not dissipated correctly and consequently causing a oxidative stress situation. In the present study only heat exposed plants showed a significant activation of the xanthophyll cycle. Alongside with this mechanism and similarly to what was observed for cold treated plants, it could be observed an increase in auroxanthin content, an efficient energy quencher under stress conditions. The coupled activation of the xanthophyll cycle along with a higher auroxanthin synthesis suggests that heat-treated individuals had higher needs to dissipate excessive energy than the cells exposed to cold treatment. In both cases appears to exist an efficient ROS scavenging mechanism. According to our data, heat and cold treatment events can have serious impacts on H. portulacoides photobiology reducing its primary productivity. At the ecosystem level, these climatic events could pose a serious threat to the survival of this species in the new climatic reality that our planet is facing.
- Water deficit and recovery response of Medicago truncatula plants expressing the ELIP-like DSP22Publication . Araújo, S. S.; Duque, A. S.; Silva, J. M.; Santos, D.; Silva, A. B.; Fevereiro, P.In this article, we present the response of Medicago truncatula Gaert. cv. Jemalong plants expressing constitutively the Dsp22 gene from Craterostigma plantagineum to water stress and rehydration. The Dsp22 gene encodes an ELIP-like protein thought to protect the chloroplast against photooxidative damage during the dehydration and rehydration. The Dsp22 transgenic homozygous M. truncatula plants showed higher amount of chlorophyll (Chl), lower Chl a/Chl b ratio and higher actual efficiency of energy conversion in photosystem 2 (ΦPSII) after rehydration, when compared to the wild type. The combined data from the Chl a fluorescence analysis, pigment quantification and biomass accumulation showed that transgenic M. truncatula plants are able to recover from water deprivation better than wild type plants.
