Browsing by Author "Molins, Elies"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Enantiopure Indolizinoindolones with in vitro activity against blood- and liver-stage malaria parasitesPublication . Pereira, Nuno A. L.; Monteiro, Ângelo; Machado, Marta; Gut, Jiri; Molins, Elies; Perry, Maria Jesus; Dourado, Jorge; Moreira, Rui; Rosenthal, Philip J.; Prudêncio, Miguel; Santos, Maria M. M.Malaria continues to be a major cause of morbidity and mortality to this day, and resistance to drugs like chloroquine has led to an urgent need to discover novel chemical entities aimed at new targets. Here, we report the discovery of a novel class of potential antimalarial compounds containing an indolizinoindolone scaffold. These novel enantiopure indolizinoindolones were synthesized, in good-to-excellent yields and excellent diastereoselectivities, by cyclocondensation reaction of (S)- or (R)-tryptophanol and 2-acyl benzoic acids, followed by intramolecular α-amidoalkylation. Interestingly, we were able to synthesize for the first time 7,13b-cis indolizinoindolones in a two-step route. The novel compounds showed promising activity against erythrocytic stages of the human malaria parasite, Plasmodium falciparum, and liver stages of the rodent parasite Plasmodium berghei. In particular, an (S)-tryptophanol-derived isoindolinone was identified as a promising starting scaffold to search for novel antimalarials, combining excellent activity against both stages of the parasite's life cycle with low cytotoxicity and excellent metabolic and chemical stability in vitro.
- Identification of tetracyclic lactams as NMDA receptor antagonists with potential application in neurological disordersPublication . Espadinha, Margarida; Viejo, Lucía; Lopes, Ricardo M. R. M.; Herrera-Arozamena, Clara; Molins, Elies; Santos, Daniel J. V. A. dos; Gonçalves, Lídia; Rodríguez-Franco, María Isabel; Ríos, Cristobal de los; Santos, Maria M. M.N-Methyl-d-aspartate receptors (NMDARs) are crucial for the normal function of the central nervous system (CNS), and fundamental in memory and learning-related processes. The overactivation of these receptors is associated with numerous neurodegenerative and psychiatric disorders. Therefore, NMDAR is considered a relevant therapeutic target for many CNS disorders. Herein, we report the synthesis and pharmacological evaluation of a new scaffold with antagonistic activity for NMDAR. Specifically, a chemical library of eighteen 1-aminoindan-2-ol tetracyclic lactams was synthesized and screened as NMDAR antagonists. The compounds were obtained by chiral pool synthesis using enantiomerically pure 1-aminoindan-2-ols as chiral inductors, and their stereochemistry was proven by X-ray crystallographic analysis of two target compounds. Most compounds reveal NMDAR antagonism, and eleven compounds display IC50 values in a Ca2+ entry-sensitive fluo-4 assay in the same order of magnitude of memantine, a clinically approved NMDAR antagonist. Docking studies suggest that the novel compounds can act as NMDAR channel blockers since there is a compatible conformation with MK-801 co-crystallized with NMDAR channel. In addition, we show that the tetracyclic 1-aminoindan-2-ol derivatives are brain permeable and non-toxic, and we identify promising hits for further optimization as modulators of the NMDAR function.
- Tryptophanol-Derived Oxazolopyrrolidone Lactams as Potential Anticancer Agents against Gastric AdenocarcinomaPublication . Espadinha, Margarida; Barcherini, Valentina; Gonçalves, Lídia; Molins, Elies; Antunes, Alexandra M. M.; Santos, Maria M. M.Gastric cancer is one of the deadliest cancers in modern societies, so there is a high level of interest in discovering new drugs for this malignancy. Previously, we demonstrated the ability of tryptophanol-derived polycyclic compounds to activate the tumor suppressor protein p53, a relevant therapeutic target in cancer. In this work, we developed a novel series of enantiomerically pure tryptophanol-derived small molecules to target human gastric adenocarcinoma (AGS) cells. From an initial screening of fourteen compounds in AGS cell line, a hit compound was selected for optimization, leading to two derivatives selective for AGS gastric cells over other types of cancer cells (MDA-MB-231, A-549, DU-145, and MG-63). More importantly, the compounds were non-toxic in normal cells (HEK 293T). Additionally, we show that the growth inhibition of AGS cells induced by these compounds is mediated by apoptosis. Stability studies in human plasma and human liver microsomes indicate that the compounds are stable, and that the major metabolic transformations of these molecules are mono- and di-hydroxylation of the indole ring.
