Browsing by Author "Henriques, Manuel O."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Drought-induced embolism in current-year shoots of two Mediterranean evergreen oaksPublication . Pinto, Clara A.; David, Jorge S.; Cochard, Hervé; Caldeira, M.C.; Henriques, Manuel O.; Quilhó, Teresa; Paço, Teresa Afonso do; Pereira, João Santos; David, Teresa S.threatened by the increasing water deficits related to climate change. To contribute to the understanding of the capacity of these oaks to withstand severe drought we assessed the vulnerability to xylem embolism and the anatomical traits in current-year shoots. Data were collected in mature trees at two sites, in central/ coastal and southern/inland Portugal. In situ safety margins to hydraulic failure were evaluated from long-term predawn and midday leaf water potential records. Results showed that xylem vulnerability to embolism was similar in Q. ilex and Q. suber. The 50% loss in hydraulic conductivity (Wxyl,50PLC) was observed at xylem water potentials of 2.9 and 3.2 MPa in shoots of Q. suber and Q. ilex, respectively. Values of mean vessel diameter of Q. suber shoots at both sites suggest an intra-species adaptation to the local water availability, with larger vessels at the more mesic site. In situ hydraulic safety margins observed in shoots showed that, even during the driest periods, both oaks lived comfortably above the most critical embolism thresholds. However, the hydraulic safety margins were narrower in the driest site. Results are relevant to the understanding of survival, growth, and functional behaviour of evergreen oaks in Mediterranean climates, under recurrent/seasonal drought conditions
- Evapotranspiration from a Mediterranean evergreen oak savannah: The role of trees and pasturePublication . Paço, Teresa Afonso do; David, Teresa S.; Henriques, Manuel O.; Pereira, João S.; Valente, Fernanda; Banza, João; Pereira, Fernando L.; Pinto, Clara; David, Jorge S.Mediterranean evergreen oak woodlands of southern Portugal (montados) are savannah-type ecosystems with a widely sparse tree cover, over extensive grassland. Therefore, ecosystem water fluxes derive from two quite differentiated sources: the trees and the pasture. Partitioning of fluxes according to these different sources is necessary to quantify overall ecosystem water losses as well as to improve knowledge on its functional behaviour. In southern Iberia, these woodlands are subjected to recurrent droughts. Therefore, reaction/resilience to water stress becomes an essential feature of vegetation on these ecosystems. Long-term tree transpiration was recorded for 6 years from a sample of holm oak (Quercus ilex ssp. rotundifolia) trees, using the Granier sap flow method. Ecosystem transpiration was measured by the eddy covariance technique for an 11-month period (February to December 2005), partly coincident with a drought year. Pasture transpiration was estimated as the difference between ecosystem (eddy covariance) and tree (sap flow) transpiration. Pasture transpiration stopped during the summer, when the surface soil dried up. In the other seasons, pasture transpiration showed a strong dependence on rainfall occurrence and on top soil water. Conversely, trees were able to maintain transpiration throughout the summer due to the deep root access to groundwater. Q. ilex trees showed a high resilience to both seasonal and annual drought. Tree transpiration represented more than half of ecosystem transpiration, in spite of the low tree density (30 trees ha 1) and crown cover fraction (21%). Tree evapotranspiration was dominated by transpiration (76%), and interception loss represented only 24% of overall tree evaporation
- Evapotranspiration from a Mediterranean evergreen oak savannah: The role of trees and pasturePublication . Paço, Teresa Afonso do; David, Teresa S.; Henriques, Manuel O.; Pereira, J.S.; Valente, F.; Banza, João; Pereira, Fernando L.; Pinto, Clara; David, Jorge S.Mediterranean evergreen oak woodlands of southern Portugal (montados) are savannah-type ecosystems with a widely sparse tree cover, over extensive grassland. Therefore, ecosystem water fluxes derive from two quite differentiated sources: the trees and the pasture. Partitioning of fluxes according to these different sources is necessary to quantify overall ecosystem water losses as well as to improve knowledge on its functional behaviour. In southern Iberia, these woodlands are subjected to recurrent droughts. Therefore, reaction/resilience to water stress becomes an essential feature of vegetation on these ecosystems. Long-term tree transpiration was recorded for 6 years from a sample of holm oak (Quercus ilex ssp. rotundifolia) trees, using the Granier sap flow method. Ecosystem transpiration was measured by the eddy covariance technique for an 11-month period (February to December 2005), partly coincident with a drought year. Pasture transpiration was estimated as the difference between ecosystem (eddy covariance) and tree (sap flow) transpiration. Pasture transpiration stopped during the summer, when the surface soil dried up. In the other seasons, pasture transpiration showed a strong dependence on rainfall occurrence and on top soil water. Conversely, trees were able to maintain transpiration throughout the summer due to the deep root access to groundwater. Q. ilex trees showed a high resilience to both seasonal and annual drought. Tree transpiration represented more than half of ecosystem transpiration, in spite of the low tree density (30 trees ha 1) and crown cover fraction (21%). Tree evapotranspiration was dominated by transpiration (76%), and interception loss represented only 24% of overall tree evaporation
- Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: a modeling approach based on root sap flowPublication . David, Teresa S.; Pinto, Clara A.; Nadezhdina, Nadezhda; Kurz-Besson, Cathy; Henriques, Manuel O.; Quilhó, Teresa; Cermak, Jan; Chaves, M.Manuela; Pereira, J.S.; David, J.S.Mediterranean evergreen oaks have to survive a long summer drought. Roots may play a relevant role under these conditions. We studied their structure and function in a mature Quercus suber L. tree in central Portugal. The root system was mapped till the lowest water table level (4.5 m depth). Xylem anatomy was analyzed in a vertical profile belowground. Sap flow was continuously monitored for 1.5 yrs in the stem and roots of this intensively studied tree (heat field deformation method) and in the stem of four trees (Granier method), in relation to environmental variables and predawn leaf water potential. The sources of water uptake were assessed by stable isotope analyses in summer. Results showed a dimorphic root system with a network of superficial roots linked to sinker roots, and a taproot diverting into tangles of deep fine roots submerged for long periods, with parenchyma aerenchyma. Transpiration was not restricted in summer due to root access to groundwater. The isotopic d18O signature of twig xylem water was similar to that of groundwater in the dry season. Two functional types of superficial roots were identified: shallow connected and deep connected roots. A modeling approach was built considering that each superficial root was linked to a sinker, with part of the root deep connected (between the stem and the sinker) and part shallow connected (between the sinker and topsoil). This conceptual framework simulated tree stem sap flow from root sap flow with a high efficiency (R2 = 0.85) in four plot trees. On an annual basis, soil water and groundwater contributions were 69.5% and 30.5% of stem flow, respectively. Annual hydraulic lift and hydraulic descent were 0.9% and 37.0% of stem flow, respectively. The trees maximize the exploitation of the environmental resources by using the topsoil water during most of the year, and groundwater together with hydraulic lift (nutrient supply) in the dry summer. This study shows that a dimorphic root system, with roots reaching groundwater, is an efficient strategy of Q. suber trees to cope with seasonal drought. Knowledge of the functional behavior of Q. suber trees under shallow water table conditions may contribute to the definition of better adapted management practices and to anticipate their responses to climate change
