Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/65286
Título: Using citizen science data for predicting the timing of ecological phenomena across regions
Autor: Capinha, César
Ceia-Hasse, Ana
de-Miguel, Sergio
Vila-Viçosa, Carlos
Porto, Miguel
Jarić, Ivan
Tiago, Patricia
Fernández, Néstor
Valdez, Jose
McCallum, Ian
Pereira, Henrique Miguel
Palavras-chave: Citizen science
Digital data
Ecological monitoring
Phenological niche
Seasonality prediction
Data: 2024
Editora: Oxford Academic
Citação: Capinha, C., Ceia-Hasse, A., de-Miguel, S., Vila-Viçosa, C., Porto, M., Jarić, I., Tiago, P., Fernández, N., Valdez, J., McCallum, I., & Pereira, H. M. (2024). Using citizen science data for predicting the timing of ecological phenomena across regions. BioScience, 74(6), 383–392. https://doi.org/10.1093/biosci/biae041
Resumo: The scarcity of long-term observational data has limited the use of statistical or machine-learning techniques for predicting intraannual ecological variation. However, time-stamped citizen-science observation records, supported by media data such as photographs, are increasingly available. In the present article, we present a novel framework based on the concept of relative phenological niche, using machine-learning algorithms to model observation records as a temporal sample of environmental conditions in which the represented ecological phenomenon occurs. Our approach accurately predicts the temporal dynamics of ecological events across large geographical scales and is robust to temporal bias in recording effort. These results highlight the vast potential of citizen-science observation data to predict ecological phenomena across space, including in near real time. The framework is also easily applicable for ecologists and practitioners already using machine-learning and statistics-based predictive approaches.
Peer review: yes
URI: http://hdl.handle.net/10451/65286
DOI: 10.1093/biosci/biae041
ISSN: 1525-3244
Versão do Editor: https://academic.oup.com/bioscience/advance-article/doi/10.1093/biosci/biae041/7709548
Aparece nas colecções:IGOT - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Capinha_Ceia-Hasse_Miguel_eta al_2024.pdf1,24 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.