Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/65286
Registo completo
Campo DCValorIdioma
degois.publication.firstPage383pt_PT
degois.publication.issue6-
degois.publication.lastPage392-
degois.publication.titleBioSciencept_PT
dc.relation.publisherversionhttps://academic.oup.com/bioscience/advance-article/doi/10.1093/biosci/biae041/7709548pt_PT
dc.contributor.authorCapinha, César-
dc.contributor.authorCeia-Hasse, Ana-
dc.contributor.authorde-Miguel, Sergio-
dc.contributor.authorVila-Viçosa, Carlos-
dc.contributor.authorPorto, Miguel-
dc.contributor.authorJarić, Ivan-
dc.contributor.authorTiago, Patricia-
dc.contributor.authorFernández, Néstor-
dc.contributor.authorValdez, Jose-
dc.contributor.authorMcCallum, Ian-
dc.contributor.authorPereira, Henrique Miguel-
dc.date.accessioned2024-07-16T10:03:28Z-
dc.date.available2024-07-16T10:03:28Z-
dc.date.issued2024-
dc.identifier.citationCapinha, C., Ceia-Hasse, A., de-Miguel, S., Vila-Viçosa, C., Porto, M., Jarić, I., Tiago, P., Fernández, N., Valdez, J., McCallum, I., & Pereira, H. M. (2024). Using citizen science data for predicting the timing of ecological phenomena across regions. BioScience, 74(6), 383–392. https://doi.org/10.1093/biosci/biae041pt_PT
dc.identifier.issn1525-3244-
dc.identifier.urihttp://hdl.handle.net/10451/65286-
dc.description.abstractThe scarcity of long-term observational data has limited the use of statistical or machine-learning techniques for predicting intraannual ecological variation. However, time-stamped citizen-science observation records, supported by media data such as photographs, are increasingly available. In the present article, we present a novel framework based on the concept of relative phenological niche, using machine-learning algorithms to model observation records as a temporal sample of environmental conditions in which the represented ecological phenomenon occurs. Our approach accurately predicts the temporal dynamics of ecological events across large geographical scales and is robust to temporal bias in recording effort. These results highlight the vast potential of citizen-science observation data to predict ecological phenomena across space, including in near real time. The framework is also easily applicable for ecologists and practitioners already using machine-learning and statistics-based predictive approaches.pt_PT
dc.language.isoengpt_PT
dc.publisherOxford Academicpt_PT
dc.relationUIDB/00295/2020pt_PT
dc.relationUIDP/00295/2020)pt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectCitizen sciencept_PT
dc.subjectDigital datapt_PT
dc.subjectEcological monitoringpt_PT
dc.subjectPhenological nichept_PT
dc.subjectSeasonality predictionpt_PT
dc.titleUsing citizen science data for predicting the timing of ecological phenomena across regionspt_PT
dc.typearticlept_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.peerreviewedyespt_PT
degois.publication.volume74-
dc.identifier.doi10.1093/biosci/biae041pt_PT
Aparece nas colecções:IGOT - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Capinha_Ceia-Hasse_Miguel_eta al_2024.pdf1,24 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.