Utilize este identificador para referenciar este registo:
http://hdl.handle.net/10451/65286
Registo completo
Campo DC | Valor | Idioma |
---|---|---|
degois.publication.firstPage | 383 | pt_PT |
degois.publication.issue | 6 | - |
degois.publication.lastPage | 392 | - |
degois.publication.title | BioScience | pt_PT |
dc.relation.publisherversion | https://academic.oup.com/bioscience/advance-article/doi/10.1093/biosci/biae041/7709548 | pt_PT |
dc.contributor.author | Capinha, César | - |
dc.contributor.author | Ceia-Hasse, Ana | - |
dc.contributor.author | de-Miguel, Sergio | - |
dc.contributor.author | Vila-Viçosa, Carlos | - |
dc.contributor.author | Porto, Miguel | - |
dc.contributor.author | Jarić, Ivan | - |
dc.contributor.author | Tiago, Patricia | - |
dc.contributor.author | Fernández, Néstor | - |
dc.contributor.author | Valdez, Jose | - |
dc.contributor.author | McCallum, Ian | - |
dc.contributor.author | Pereira, Henrique Miguel | - |
dc.date.accessioned | 2024-07-16T10:03:28Z | - |
dc.date.available | 2024-07-16T10:03:28Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Capinha, C., Ceia-Hasse, A., de-Miguel, S., Vila-Viçosa, C., Porto, M., Jarić, I., Tiago, P., Fernández, N., Valdez, J., McCallum, I., & Pereira, H. M. (2024). Using citizen science data for predicting the timing of ecological phenomena across regions. BioScience, 74(6), 383–392. https://doi.org/10.1093/biosci/biae041 | pt_PT |
dc.identifier.issn | 1525-3244 | - |
dc.identifier.uri | http://hdl.handle.net/10451/65286 | - |
dc.description.abstract | The scarcity of long-term observational data has limited the use of statistical or machine-learning techniques for predicting intraannual ecological variation. However, time-stamped citizen-science observation records, supported by media data such as photographs, are increasingly available. In the present article, we present a novel framework based on the concept of relative phenological niche, using machine-learning algorithms to model observation records as a temporal sample of environmental conditions in which the represented ecological phenomenon occurs. Our approach accurately predicts the temporal dynamics of ecological events across large geographical scales and is robust to temporal bias in recording effort. These results highlight the vast potential of citizen-science observation data to predict ecological phenomena across space, including in near real time. The framework is also easily applicable for ecologists and practitioners already using machine-learning and statistics-based predictive approaches. | pt_PT |
dc.language.iso | eng | pt_PT |
dc.publisher | Oxford Academic | pt_PT |
dc.relation | UIDB/00295/2020 | pt_PT |
dc.relation | UIDP/00295/2020) | pt_PT |
dc.rights | openAccess | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Citizen science | pt_PT |
dc.subject | Digital data | pt_PT |
dc.subject | Ecological monitoring | pt_PT |
dc.subject | Phenological niche | pt_PT |
dc.subject | Seasonality prediction | pt_PT |
dc.title | Using citizen science data for predicting the timing of ecological phenomena across regions | pt_PT |
dc.type | article | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.peerreviewed | yes | pt_PT |
degois.publication.volume | 74 | - |
dc.identifier.doi | 10.1093/biosci/biae041 | pt_PT |
Aparece nas colecções: | IGOT - Artigos em Revistas Internacionais |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Capinha_Ceia-Hasse_Miguel_eta al_2024.pdf | 1,24 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.