Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/54194
Título: Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: initial application to the GENFI cohort
Autor: Cury, Claire
Durrleman, Stanley
Cash, David M.
Lorenzi, Marco
Nicholas, Jennifer M.
Bocchetta, Martina
van Swieten, John C.
Borroni, Barbara
Galimberti, Daniela
Masellis, Mario
Tartaglia, Maria Carmela
Rowe, James B.
Graff, Caroline
Tagliavini, Fabrizio
Frisoni, Giovanni B.
Laforce, Robert
Finger, Elizabeth
De Mendonça, Alexandre
Sorbi, Sandro
Ourselin, Sebastien
Rohrer, Jonathan D.
Modat, Marc
Andersson, Christin
Archetti, Silvana
Arighi, Andrea
Benussi, Luisa
Black, Sandra
Cosseddu, Maura
Fallstrm, Marie
Ferreira, Carlos
Fenoglio, Chiara
Fox, Nick
Freedman, Morris
Fumagalli, Giorgio
Gazzina, Stefano
Ghidoni, Roberta
Grisoli, Marina
Jelic, Vesna
Jiskoot, Lize
Keren, Ron
Lombardi, Gemma
Maruta, Carolina
Meeter, Lieke
van Minkelen, Rick
Nacmias, Benedetta
ijerstedt, Linn
Padovani, Alessandro
Panman, Jessica
Pievani, Michela
Polito, Cristina
Premi, Enrico
Prioni, Sara
Rademakers, Rosa
Redaelli, Veronica
Rogaeva, Ekaterina
Rossi, Giacomina
Rossor, Martin
Scarpini, Elio
Tang-Wai, David
Tartaglia, Carmela
Thonberg, Hakan
Tiraboschi, Pietro
Verdelho, Ana
Warren, Jason
Palavras-chave: Clustering
Computational anatomy
Parallel transport
Shape analysis
Spatiotemporal geodesic regression
Thalamus
Data: 2019
Editora: Elsevier
Citação: Neuroimage. 2019 Mar;188:282-290
Resumo: Brain atrophy as measured from structural MR images, is one of the primary imaging biomarkers used to track neurodegenerative disease progression. In diseases such as frontotemporal dementia or Alzheimer's disease, atrophy can be observed in key brain structures years before any clinical symptoms are present. Atrophy is most commonly captured as volume change of key structures and the shape changes of these structures are typically not analysed despite being potentially more sensitive than summary volume statistics over the entire structure. In this paper we propose a spatiotemporal analysis pipeline based on Large Diffeomorphic Deformation Metric Mapping (LDDMM) to detect shape changes from volumetric MRI scans. We applied our framework to a cohort of individuals with genetic variants of frontotemporal dementia and healthy controls from the Genetic FTD Initiative (GENFI) study. Our method, take full advantage of the LDDMM framework, and relies on the creation of a population specific average spatiotemporal trajectory of a relevant brain structure of interest, the thalamus in our case. The residuals from each patient data to the average spatiotemporal trajectory are then clustered and studied to assess when presymptomatic mutation carriers differ from healthy control subjects. We found statistical differences in shape in the anterior region of the thalamus at least five years before the mutation carrier subjects develop any clinical symptoms. This region of the thalamus has been shown to be predominantly connected to the frontal lobe, consistent with the pattern of cortical atrophy seen in the disease.
Descrição: © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Peer review: yes
URI: http://hdl.handle.net/10451/54194
DOI: 10.1016/j.neuroimage.2018.11.063
ISSN: 1053-8119
Versão do Editor: https://www.sciencedirect.com/journal/neuroimage
Aparece nas colecções:FM - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Spatiotemporal_analysis.pdf1,25 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.