Utilize este identificador para referenciar este registo: http://hdl.handle.net/10451/54194
Registo completo
Campo DCValorIdioma
degois.publication.firstPage282pt_PT
degois.publication.lastPage290pt_PT
degois.publication.titleNeuroImagept_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/journal/neuroimagept_PT
dc.contributor.authorCury, Claire-
dc.contributor.authorDurrleman, Stanley-
dc.contributor.authorCash, David M.-
dc.contributor.authorLorenzi, Marco-
dc.contributor.authorNicholas, Jennifer M.-
dc.contributor.authorBocchetta, Martina-
dc.contributor.authorvan Swieten, John C.-
dc.contributor.authorBorroni, Barbara-
dc.contributor.authorGalimberti, Daniela-
dc.contributor.authorMasellis, Mario-
dc.contributor.authorTartaglia, Maria Carmela-
dc.contributor.authorRowe, James B.-
dc.contributor.authorGraff, Caroline-
dc.contributor.authorTagliavini, Fabrizio-
dc.contributor.authorFrisoni, Giovanni B.-
dc.contributor.authorLaforce, Robert-
dc.contributor.authorFinger, Elizabeth-
dc.contributor.authorDe Mendonça, Alexandre-
dc.contributor.authorSorbi, Sandro-
dc.contributor.authorOurselin, Sebastien-
dc.contributor.authorRohrer, Jonathan D.-
dc.contributor.authorModat, Marc-
dc.contributor.authorAndersson, Christin-
dc.contributor.authorArchetti, Silvana-
dc.contributor.authorArighi, Andrea-
dc.contributor.authorBenussi, Luisa-
dc.contributor.authorBlack, Sandra-
dc.contributor.authorCosseddu, Maura-
dc.contributor.authorFallstrm, Marie-
dc.contributor.authorFerreira, Carlos-
dc.contributor.authorFenoglio, Chiara-
dc.contributor.authorFox, Nick-
dc.contributor.authorFreedman, Morris-
dc.contributor.authorFumagalli, Giorgio-
dc.contributor.authorGazzina, Stefano-
dc.contributor.authorGhidoni, Roberta-
dc.contributor.authorGrisoli, Marina-
dc.contributor.authorJelic, Vesna-
dc.contributor.authorJiskoot, Lize-
dc.contributor.authorKeren, Ron-
dc.contributor.authorLombardi, Gemma-
dc.contributor.authorMaruta, Carolina-
dc.contributor.authorMeeter, Lieke-
dc.contributor.authorvan Minkelen, Rick-
dc.contributor.authorNacmias, Benedetta-
dc.contributor.authorijerstedt, Linn-
dc.contributor.authorPadovani, Alessandro-
dc.contributor.authorPanman, Jessica-
dc.contributor.authorPievani, Michela-
dc.contributor.authorPolito, Cristina-
dc.contributor.authorPremi, Enrico-
dc.contributor.authorPrioni, Sara-
dc.contributor.authorRademakers, Rosa-
dc.contributor.authorRedaelli, Veronica-
dc.contributor.authorRogaeva, Ekaterina-
dc.contributor.authorRossi, Giacomina-
dc.contributor.authorRossor, Martin-
dc.contributor.authorScarpini, Elio-
dc.contributor.authorTang-Wai, David-
dc.contributor.authorTartaglia, Carmela-
dc.contributor.authorThonberg, Hakan-
dc.contributor.authorTiraboschi, Pietro-
dc.contributor.authorVerdelho, Ana-
dc.contributor.authorWarren, Jason-
dc.date.accessioned2022-08-25T11:09:56Z-
dc.date.available2022-08-25T11:09:56Z-
dc.date.issued2019-
dc.identifier.citationNeuroimage. 2019 Mar;188:282-290pt_PT
dc.identifier.issn1053-8119-
dc.identifier.urihttp://hdl.handle.net/10451/54194-
dc.description© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)pt_PT
dc.description.abstractBrain atrophy as measured from structural MR images, is one of the primary imaging biomarkers used to track neurodegenerative disease progression. In diseases such as frontotemporal dementia or Alzheimer's disease, atrophy can be observed in key brain structures years before any clinical symptoms are present. Atrophy is most commonly captured as volume change of key structures and the shape changes of these structures are typically not analysed despite being potentially more sensitive than summary volume statistics over the entire structure. In this paper we propose a spatiotemporal analysis pipeline based on Large Diffeomorphic Deformation Metric Mapping (LDDMM) to detect shape changes from volumetric MRI scans. We applied our framework to a cohort of individuals with genetic variants of frontotemporal dementia and healthy controls from the Genetic FTD Initiative (GENFI) study. Our method, take full advantage of the LDDMM framework, and relies on the creation of a population specific average spatiotemporal trajectory of a relevant brain structure of interest, the thalamus in our case. The residuals from each patient data to the average spatiotemporal trajectory are then clustered and studied to assess when presymptomatic mutation carriers differ from healthy control subjects. We found statistical differences in shape in the anterior region of the thalamus at least five years before the mutation carrier subjects develop any clinical symptoms. This region of the thalamus has been shown to be predominantly connected to the frontal lobe, consistent with the pattern of cortical atrophy seen in the disease.pt_PT
dc.description.sponsorshipClaire Cury is supported by the EU-FP7 project VPH-DARE@IT (FP7-ICT-2011-9-601055). Stanley Durrleman has received funding from the program Investissements d'avenir ANR-10-IAIHU-06 and the European Unions Horizon 2020 research and innovation programme EuroPOND under grant agreement No 666992, and is funded by the European Research Council (ERC) under grant agreement No 678304. Marco Lorenzi received funding from the EPSRC (EP/J020990/1). Jennifer Nicholas is supported by UK Medical Research Council (grant MR/M023664/1). David Cash is supported by grants from the Alzheimer Society (AS-PG-15-025), Alzheimer’s Research UK (ARUK-PG2014-1946) and Medical Research Council UK (MR/M023664/1). JBR is supported by the Wellcome Trust (103838). Jonathan D. Rohrer is an MRC Clinician Scientist and has received funding from the NIHR Rare Diseases Translational Research Collaboration. Sebastien Ourselin receives funding from the EPSRC (EP/H046410/1, EP/K005278), the MRC (MR/J01107X/1), the NIHR Biomedical Research Unit (Dementia) at UCL and the National Institute for Health Research University College London Hospitals Biomedical Research Centre (NIHR BRC UCLH/UCL High Impact Initiative- BW.mn.BRC10269). Marc Modat is supported by the UCL Leonard Wolfson Experimental Neurology Centre (PR/ylr/18575) and Alzheimer's Society UK (AS-PG-15-025).pt_PT
dc.language.isoengpt_PT
dc.publisherElsevierpt_PT
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/666992/EUpt_PT
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/678304/EUpt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectClusteringpt_PT
dc.subjectComputational anatomypt_PT
dc.subjectParallel transportpt_PT
dc.subjectShape analysispt_PT
dc.subjectSpatiotemporal geodesic regressionpt_PT
dc.subjectThalamuspt_PT
dc.titleSpatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: initial application to the GENFI cohortpt_PT
dc.typearticlept_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.peerreviewedyespt_PT
degois.publication.volume188pt_PT
dc.identifier.doi10.1016/j.neuroimage.2018.11.063pt_PT
dc.identifier.eissn1095-9572-
Aparece nas colecções:FM - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Spatiotemporal_analysis.pdf1,25 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.