Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.5/29043
Título: Renormalization of Diophantine skew flows, with applications to the reducibility problem
Autor: Koch, Hans
Dias, João Lopes
Palavras-chave: Hamiltonian Flows
Diophantine Approximation
Probabilistic Perspective
Differential Equations
Data: 2008
Editora: American Institute of Mathematical Sciences (AIMS)
Citação: Koch, Hans and João Lopes Dias .(2008). “Renormalization of Diophantine skew flows, with applications to the reducibility problem”. Discrete and Continuous Dynamical Systems, Volume 21, Number 2: pp. 477–500 .(Search PDF in 2023)
Resumo: We introduce a renormalization group framework for the study of quasiperiodic skew flows on Lie groups of real or complex ռxռ matrices, for arbitrary Diophantine frequency vectors in ℝᵈ and dimensions d,n. In cases where the Lie algebra component of the vector field is small, it is shown that there exists an analytic manifold of reducible skew systems, for each Diophantine frequency vector. More general near-linear flows are mapped to this case by increasing the dimension of the torus. This strategy is applied for the group of unimodular 2x2 matrices, where the stable manifold is identified with the set of skew systems having a fixed fibered rotation number. Our results apply to vector fields of class Cγ, with γ depending on the number of independent frequencies, and on the Diophantine exponent.
URI: http://hdl.handle.net/10400.5/29043
Aparece nas colecções:CEMAPRE - Artigos em Revistas Internacionais / Articles in International Journals
DM -Artigos em Revistas Internacionais / Articles in International Journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
HKOC. JLDIAS.2008..pdf323,66 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.