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ABSTRACT. We introduce a renormalization group framework for the study of quasiperi-
odic skew flows on Lie groups of real or complex n×n matrices, for arbitrary Diophantine
frequency vectors in Rd and dimensions d,n. In cases where the Lie algebra component of
the vector field is small, it is shown that there exists an analytic manifold of reducible skew
systems, for each Diophantine frequency vector. More general near-linear flows are mapped
to this case by increasing the dimension of the torus. This strategy is applied for the group
of unimodular 2×2 matrices, where the stable manifold is identified with the set of skew
systems having a fixed fibered rotation number. Our results apply to vector fields of class
Cγ , with γ depending on the number of independent frequencies, and on the Diophantine
exponent.

1. Introduction and main results. Let G be a Lie subgroup of GL(n,C) or
GL(n,R), and denote by A the corresponding Lie algebra. We consider vector fields
on Λ = Td ×G of the form

X(q, y) =
(
ω, f(q)y

)
, f(q) ∈ A , (q, y) ∈ Λ . (1)

Here, Td denotes the d-torus, with T = R/(2πZ). Such a vector field X determines
a linear flow on the torus, q(t) = q0 + tω, and a linear evolution equation on G,

ẏ(t) = f(q0 + tω)y(t) , y(0) = y0 , (2)

whose coefficients are periodic or quasiperiodic functions of t, depending on the
frequency vector ω. If t 7→ Φt

X(q0) denotes the solution of (2), for the case where
y0 ∈ G is the identity, then the flow ΨX associated with the vector field (1) can be
written as

Ψt
X(q0, y0) =

(
q0 + tω,Φt

X(q0)y0

)
, (q0, y0) ∈ Λ , t ∈ R . (3)
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Such flows are commonly referred to as skew flows. Classical Floquet theory shows
that if t 7→ q(t) is periodic, and in particular if d = 1, then the system is reducible.
To be more precise, the vector field (1) is said to be reducible if there exists a
function V : Td → G, such that

Φt
X(q) = V (q + tω)−1etCV (q) , t ∈ R , q ∈ Td , (4)

for some constant matrix C ∈ A. If ω ∈ Rd is fixed, we will also refer to f as being
reducible. Another characterization of reducibility can be given by considering the
map V : Λ → Λ, defined by

V(q, y) =
(
q, V (q)y

)
. (5)

The pushforward of X = (ω, f .) under this map is given by the equation
(V∗X

)
(q, y) =

(
ω, (V?f)(q)y

)
, V?f = (DωV + V f)V −1 , (6)

where Dω = ω · ∇. Modulo smoothness assumptions, (4) is equivalent to V?f ≡ C.
More recent results concern the reducibility of skew systems with rationally inde-

pendent frequencies ω1, . . . , ωd , where t 7→ q(t) is quasiperiodic. For such systems,
solving V?f ≡ C leads to small divisor problems, as in classical KAM theory. Results
based on KAM type methods have been obtained in [26,2] for G = GL(d,R), and
in [12,5,27,6,18,19,20,21,28] for other groups. One case that has been investigated
extensively [5,27,6] motivated by the study of the one-dimensional Schrödinger equa-
tion with quasiperiodic potential, is G = SL(2,R). In particular, Eliasson’s result
[6] guarantees reducibility for analytic vector fields of the form (1), with ω Dio-
phantine, and with the fibered rotation number (associated with a rotation in G)
being either rational or Diophantine with respect to ω. The vector field is required
to be close to constant, as in all KAM based results, but the smallness condition
does not depend on further arithmetic properties of the rotation number. All of the
work mentioned so far assumes that f is analytic, except for [2], which also covers
differentiable cases. By contrast to these results, there are also generic examples of
non-reducible systems [29,6,7].

Another approach to the reducibility problem involves renormalization methods.
For discrete time cocycles over rotations by an irrational angle α, and for G = SU(2),
Rychlik introduced in [29] a renormalization scheme based on a rescaling of first re-
turn maps, using the continued fractions expansion of α. Later, Krikorian improved
the method in [20,21], where he was able to prove global (non-perturbative) results
for compact C∞ cocycles. A non-compact case was treated in [1]. In the context
of flows, renormalization techniques were used in [25] to prove a local normal form
theorem for analytic skew systems with a Brjuno base flow. Unlike the KAM meth-
ods, the renormalization approach has so far been restricted to skew systems with
a one-dimensional base map or two-dimensional base flow.

In this paper, we introduce a new renormalization group approach for skew flows,
which allows us to extend the renormalization analysis of skew flows in several direc-
tions, including the case of finite differentiability. One of its characteristics is that
fibered rotation numbers are included in the renormalization procedure. This leads
naturally to multi-frequency problems, and to the analysis of skew systems over tori
of arbitrary dimensions, which we handle by making use of the multidimensional
continued fractions algorithm introduced in [13].
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We focus on cases where ω ∈ Rd is Diophantine, in the sense that

|ω · ν| ≥ C‖ν‖1−d−β , ν ∈ Z \ {0} , (7)

for some constants β, C > 0. Our vector fields are assumed to be of class Cγ , with
γ larger than some constant γ0(β) specified below. Given any γ ≥ 0, define Fγ to
be the Banach space of integrable functions f : Td → GL(n,C), for which the norm

‖f‖γ = ‖f0‖+
∑

0 6=ν∈Zd

‖fν‖(2‖ν‖)γ , fν = (2π)−d

∫

Td

f(q)e−iν·qdq , (8)

is finite. Here, and in what follows, we use the standard `2 norm on the spaces
Cm, and the corresponding operator norm for m×m matrices. Define Ef to be the
torus-average f0 of a function f ∈ Fγ . The set of functions in Fγ that take values
in G or A will be denoted by Gγ or Aγ , respectively.

Our first result describes a class of vector fields X = (ω, f .) that are reducible to
the trivial vector field (ω, 0). In what follows, the Diophantine constants β,C > 0
are considered fixed. Define

γ0(β) = (d + β)
[
1 + 2β + 2

√
β
[
1 + β − 1/(d + β)

] ]
− 1 . (9)

Theorem 1. Given γ ≥ γ2 > γ0(β), there exists an open neighborhood B of the
origin in Fγ , and for each Diophantine unit vector ω satisfying (7) a manifold M in
B, such that the following holds. M is the graph of an analytic map M : (I−E)B →
EB, which vanishes together with its derivative at the origin, and which takes values
in Aγ when restricted to Aγ . Every function f on M is reducible to zero. The
corresponding change of coordinates V belongs to Fε and depends analytically on
f , where ε = γ − γ2 . If in addition, f ∈ Aγ , then V belongs to Gε , and if f is the
restriction to Td of an analytic function, then so is V .

Here, a function ψ defined on M is said to be analytic if ψ ◦M is analytic on
the domain of M . We note that M is obtained in the proof as the stable manifold
under renormalization.

This theorem can also be applied to vector fields Y = (w, g .), whose Lie algebra
component g is close to a constant matrix A, but not necessarily small. But w and
A have to satisfy a certain Diophantine condition. More specifically, assume that
A ∈ A admits a spectral decomposition A = κ · J = κ1J1 + . . . + κ`J` , where κ is
some vector in R`, and where the Jj are linearly independent mutually commuting
matrices in A, such that t 7→ exp(tJj) is 2π-periodic. The vector κ will be referred
to as the frequency vector of A.

In order to see how Theorem 1 can be applied to g ≈ A, we start with a skew
system Y = (w, g .) on Tm ×G, and then take d = m + `. Clearly, if g ≡ A = κ · J ,
then the flow for Y is equivalent to the flow for X = (ω, 0), with ω = (w, κ). More
generally, if g −A is small but not necessarily zero, we consider the function

f(q) = e−r·Jg(x)er·J − κ · J , q = (x, r) ∈ Tm × T` . (10)

If Y is regarded as a vector field on Λ by identifying w and x with (w, 0) and (x, 0),
respectively, then the above relation between g and f can be written as

g = Θ?f , Θ(q, y) =
(
q, er·Jy

)
. (11)



480 HANS KOCH AND JOÃO LOPES DIAS

In order to simplify the discussion, assume now that ω has length one. If ω =
(w, κ) is Diophantine of type (7) and g belongs to the manifold Θ?M, then the
flow for X = (ω, f .) can be trivialized with a change of coordinates V , as described
in Theorem 1. The same now holds for g. However, the corresponding change of
variables W (q) = V (q)e−r·J is not of the desired form, since it still depends on the
coordinates rj . But as we will see,

Φt
Y (x) = W (x + tω)−1W (x) = V (x + tw)−1etCV (x) , (12)

for some matrix C ∈ A with frequency vector κ, provided that V is differentiable.
What remains to be shown, in specific cases, is that the space of functions of the
type (10) has a reasonable intersection with the manifold M.

This procedure can be characterized as transforming some circular motion on G
into motion on an extended torus. Our motivation for this approach is to renor-
malize all frequencies of the system, and not just those coming from the base flow.
This seems natural, since a reducible system with self-similar frequencies (of the
type described in [15,23]) is self-similar; and according to the general philosophy of
renormalization, such systems should be associated with a renormalization group
fixed point. Our approach does have this property. In the case discussed below, it
also has the advantage that the analysis of near-constant skew flows Y = (ω, g .)
can be reduced to a purely local analysis near f ≡ 0. A disadvantage related to the
use of (7) is mentioned after Theorem 1.2.

Consider now G = SL(2,R). In this case, there is a natural rotation number that
can be associated with a skew flow, due to the fact that the fundamental group of
G is Z (as for higher dimensional symplectic groups). To this end, consider the flow
for Y = (w, g .) on the product of Td−1 with R2 \ {0},

v̇(t) = g(x0 + tw)v(t) , v(0) = v0 . (13)

Denote by α(t) the angle between v(t) and some fixed unit vector u0 , and let
α0 = α(0). Then the lift of this angle to R evolves according to the equation

α̇(t) = −〈
e−α(t)JJg(x0 + tw)eα(t)Ju0 , u0

〉
, α(0) = α0 , (14)

where 〈. , .〉 denotes the standard inner product on R2. Here, and in the remaining
part of this section, J =

[
0 −1
1 0

]
. If the components of w are rationally independent,

then we can define the so-called fibered rotation number of Y ,

%(Y ) = lim
t→∞

α(t)
t

. (15)

As was shown in [11], this limit exists for all x0 ∈ Td−1 and α0 ∈ R, and it is
independent of these initial conditions.

From the definition of Θ, we see that %(Y ) = κ if and only if %(X) = 0. Thus, we
may restrict our analysis to skew flows with fibered rotation number zero. Theo-
rem 1 deals with precisely such flows. However, the functions (10) are of a particular
type, and more can be said in this case.

In the following theorem, G = SL(2,R), and A is the corresponding Lie algebra
of real traceless 2 × 2 matrices. Denote by A0

γ the subspace of functions g in Aγ

with the property that g(q) = g(x), for all q = (x, r) in Td−1 × T1.
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Theorem 2. Given γ ≥ γ2 > γ0(β) and a > 0, the following holds for some R > 0.
Consider a constant skew system (w, A) on Td−1 × G, for a matrix A ∈ A that
has purely imaginary eigenvalues, say ±κi. Assume that ω = (w, κ) satisfies the
Diophantine condition (7), and that ‖A‖ ≤ a|κ|‖ω‖. Then there exists an open
neighborhood B0 of the constant function x 7→ A in A0

γ , containing a ball of radius
R centered at this function, such that for any g ∈ B0 , the one-parameter family
λ 7→ g + λA contains a unique member in B0 , say g′, whose associated skew flow
has a fibered rotation number κ. If γ − γ2 = ε ≥ 1, then g′ is reducible to a
constant C ∈ A, as described by equation (12), via a change of coordinates V ∈ Gε .
Furthermore, the function g′, and (if ε ≥ 1) the quantities C and V , depend real
analytically on g.

We note that the use of the symmetric Diophantine condition (7) for the combined
frequency vector ω = (w, κ) is clearly non-optimal [12,2]. Our choice of (7) was
motivated by the fact that good bounds are available on a continued fractions
expansion in this case [13]. We also note that Diophantine vectors in Rd already
constitute a set of full measure [3]. Weakening our assumptions on ω to vectors of
the type used in [12,2], or to an even larger class if possible, will require further
progress on multidimensional continued fractions expansions.

Theorem 2 is proved by first performing a simple change of coordinates g 7→
L−1gL with L ∈ G, such that L−1AL = κJ , followed by a constant scaling Y 7→ cY
of the resulting skew system, which converts (w, κ) to a unit vector. This is where
the condition ‖A‖ ≤ a|κ|‖ω‖ comes in. After that, the task is reduced via the map
Θ to the study of vector fields X = (ω, f .) with f of the type (10). Thus, in view of
Theorem 1, it suffices to prove (besides real analyticity) that the family λ 7→ f +λJ
intersects the manifold M in exactly one point, that %(X) = 0 implies f ∈M, and
that (12) holds if f ∈M.

Our analysis of skew systems near (ω, 0), including the proof of Theorem 1, is
based on the use of renormalization group (RG) transformations. These transfor-
mations are defined in the next section. As described in more detail in Section 4,
each Diophantine vector ω determines, via a multidimensional continued fractions
expansion [13], a sequence of matrices Tn ∈ SL(d,Z). The n-th step RG transfor-
mation Nn involves a change of variables (q, y) 7→ (Tnq, y), and another change of
variables of the form (5), which eliminates certain “nonresonant modes”. This is
similar in spirit to the RG transformations used in [25,15,23,24,4,16,9,17,13]. The
details of the elimination procedure can be found in Section 3. Each transformation
Nn has f ≡ 0 as a fixed point, and the stable/unstable subspaces of DNn(0) are the
same for all n. Thus, it is possible to define and construct a “stable manifold” (the
manifold M described in Theorem 1) for the sequence {Nn}. This construction
is carried out in Section 5, by extending our RG transformations to parametrized
families. The reducibility of functions f ∈ M is proved in Section 6, by combining
the partial reductions (elimination of nonresonant modes) from the individual RG
steps. The remaining results concerning G = SL(2,R) are proved in Section 7.

2. Renormalization. We start by describing a single RG step. A unit vector
ω ∈ Rd, and a matrix T in SL(d,Z) are assumed to be given, subject to certain
conditions that will be described below. The matrix T defines a map T : Λ → Λ,

T (q, y) =
(
T (q), y

)
, (16)

and the pushforward of a vector field (1) under this map is given by(T∗X
)
(q, y) =

(
Tω, (T?f)(q)y

)
, T?f = f ◦ T−1 . (17)
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For every positive τ < 1, define K(τ) to be the set of all vectors in Rd that are
contracted by a factor ≤ τ under the action of S = (T ∗)−1. Here, T ∗ denotes the
transpose of T . Given a fixed value for this contraction factor τ , to be specified
later, the “resonant” part I+f of a function f ∈ Fγ , and its “nonresonant” part
I−f , are defined by the equation

I
±
f(q) =

∑

ν∈I±
fνeiν·q , (18)

where I
+

= K(τ)∩Zd and I
−

= Zd\I+
. As one would expect (see the lemma below),

the resonant part of a function f ∈ Fγ is contracted under the action of T?.
In order to simplify notation, we will drop the subscript γ from now on, unless

two different choices of γ are being considered at the same time.

Lemma 3. If f ∈ F satisfies I−f = Ef = 0, then ‖T?f‖ ≤ τγ‖f‖.
The proof follows immediately from the definitions:

‖T?f‖ =
∑

0 6=ν∈I+

‖fν‖(2‖Sν‖)γ ≤
∑

0 6=ν∈I+

‖fν‖(2τ‖ν‖)γ = τγ‖f‖ .

The complementary property of the nonresonant modes is that they can easily be
eliminated via a change of variables of the form (5). To be more precise, we assume
that the constant τ can be (and has been) chosen in such a way that K(τ/2) contains
the orthogonal complement of ω. Under this assumption, we will show in Section 3
that if f ∈ F is sufficiently close to zero, then it is possible to find Uf ∈ F close to
the identity, such that

I
−
(Uf)?f = 0 . (19)

By construction, the map f 7→ Uf is analytic, and Uf belongs to G whenever f ∈ A.
The renormalized function N (f) and the renormalized vector field R(X) are now
defined by the equation

N (f) = η−1T?(Uf)?f , R(X) = η−1T∗(Uf)∗X , (20)

where η is the norm of Tω, so that the torus component of R(X) is again a unit
vector. The corresponding flow is given by

Φt
R(X) =

[
Uf(. + η−1tω)Φη−1t

X U−1
f

] ◦ T−1 . (21)

In what follows, the RG transformation N is regarded as a map from an open
domain in F to F . But it should be kept in mind that its restriction to A takes
values in A. An explicit bound on the map f 7→ Uf leads to the following.

Theorem 4. Let f = C +h, with C constant and Eh = 0. Assume that ‖C‖ < σ/6
and ‖h‖ < 2−9σ, with σ satisfying 2σ‖S‖ < τ . Then

N (f) = η−1
[
C + h̃

]
,

∥∥h̃
∥∥ ≤ 3

2τγ‖h‖ ,
∣∣Eh̃

∣∣ ≤ 16σ−1τγ‖h‖2 . (22)

N is analytic on the region determined by the given bounds on C and h. Further-
more, if f is real-valued, then so is N (f).

A proof of this theorem will be given in Section 3. Notice that the zero-average
part h of f gets contracted by roughly a factor τγ relative to the constant part C,
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which is the same factor that appears in Lemma 3. The restriction on the size of
the domain of N , which is of the order of σ, comes from the solution of equation
(19).

The goal now is to compose RG transformations of this type, as long as the
constant part of f does not become too large. Given a sequence of matrices
P0, P1, P2, . . . in SL(d,Z), with P0 the identity, and a unit vector ω0 in Rd, we
define

Tn = PnP−1
n−1 , Sn = (T ∗n)−1 , λn = ‖Pnω0‖ , ωn = λ−1

n Pnω0 , (23)

for n = 1, 2, . . . . The following theorem will be proved in Section 4, using as input
certain estimates from [13].

Theorem 5. Given γ1 > γ0(β), there exist two sequences n 7→ σn and n 7→ τn of
positive real numbers less than one, both converging to zero, such that the following
holds. If ω0 is a unit vector in Rn satisfying the Diophantine condition (7), then
there exists a sequence n 7→ Pn of unimodular integer matrices, such that with Sn

and λn as defined in (23),

2σn‖Sn‖ < τn , ‖Snξ‖ ≤ τn

2
‖ξ‖ , λ−1

n

n∏

j=1

(
4τγ1

j

) · σ1 ≤ σn+1 , (24)

whenever ωn−1 · ξ = 0, for every positive integer n.

In order to simplify the discussion, the quantities described in this theorem are
considered fixed from now on. We also assume that γ ≥ γ1 .

The n-th step RG transformation Nn and the composed RG transformation Ñn

are defined by the equation

Nn(f) = η−1
n (Tn)?(Uf)?f , Ñn = Nn ◦ Nn−1 ◦ . . . ◦ N1 , (25)

where ηn = λn/λn−1 for n ≥ 1, with λ0 = 1. To be more specific, we choose
τ = τn and ω = ωn−1 in the construction of the map Uf that enters the definition
of N = Nn .

By Theorem 4, the transformation Nn is well defined on the open ball Bn ⊂ F of
radius 2−9σn , centered at the origin. Bn will be referred to as the domain of Nn .
The domain of Ñn is defined recursively as the set of all functions in the domain of
Ñn−1 that are mapped into Bn by Ñn−1. For such a function f , define f0 = f and

fn = Ñn(f0) , f̄n = Efn , hn = fn − f̄n . (26)

By Theorem 4 and Theorem 5, we have

‖hn‖ ≤ λ−1
n

n∏

j=1

(
2τγ

j

) · ‖f0‖ ≤ 2−10σn+1 . (27)

This shows e.g. that for f ∈ F close to zero, the question of whether or not f is
infinitely renormalizable depends only on the size of the averages f̄n . Consider now
a sequence ρ of real numbers satisfying

0 < ρn ≤ 2−10σn+1 , n = 0, 1, 2, . . . . (28)
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Given an open set B(γ) ⊂ B1 containing zero, define B̃0 = B(γ) and

B̃n+1 =
{
f ∈ B̃n : ‖f̄n‖ < ρn

}
, n = 0, 1, 2, . . . . (29)

The bound (27) shows that B̃n+1 is contained in the domain of Ñn+1 .

Theorem 6. If γ > γ1 then there exists a sequence ρ satisfying (28), and a non-

empty open neighborhood B(γ) of the origin in F , such that Mγ =
⋂∞

n=0 B̃n is the
graph of an analytic function M : (I−E)B(γ) → EB(γ). Both M and its derivative
vanish at the origin.

A proof of this theorem is given in Section 5. The reducibility of functions f
belonging to M = Mγ will be proved in Section 6, by iterating the identity (21),
and using that fn → 0, in order to estimate the product of the matrices Ufn .

3. Elimination of nonresonant modes. Here we solve equation (19) and prove
Theorem 4. A unit vector ω ∈ Rd and a matrix T in SL(d,Z) are assumed to
be given. As mentioned in the last section, we also assume that the cone K(τ/2)
contains the orthogonal complement of ω, and that 2σ‖S‖ < τ .

Proposition 7. If ν belongs to I
−

then |ω · ν| > σ.

Proof. Given ν ∈ I
−
, consider its decomposition ν = ν‖+ν⊥ into a vector ν‖ parallel

to ω and a vector ν⊥ perpendicular to ω. By using that ‖ν‖, ‖S‖, ‖ω‖ ≥ 1, we obtain

σ ≤ σ‖ν‖ < ‖S‖−1 τ

2
‖ν‖ ≤ ‖S‖−1

(‖Sν‖ − ‖Sν⊥‖
)

≤ ‖S‖−1‖Sν‖‖ ≤ ‖ν‖‖ ≤ |ω · ν| ,

as claimed. ¤
Given any n× n matrix C, define Ĉf = fC − Cf for every function f ∈ F .

Proposition 8. Assume that ‖C‖ ≤ σ/4. Then the linear operators Dω = ω · ∇
and D = Dω + Ĉ commute with I−, have bounded inverses when restricted to I−F ,
and satisfy ∥∥D−1

ω I
−∥∥ ≤ σ−1 ,

∥∥DωD−1I
−∥∥ ≤ 2 . (30)

Proof. Clearly, Dω, Ĉ, and I− commute with each other. The first inequality in
(30) follows immediately from Proposition 7. It implies ‖D−1

ω ĈI−‖ ≤ 2σ−1‖C‖ ≤
1/2, and the indicated bound on DωD−1I− = (I+ D−1

ω Ĉ)−1I− is now obtained via
Neumann series. ¤

In the rest of this paper, we will frequently use analyticity arguments. Thus, let
us recall at this point some relevant facts [10] about
analytic maps. Let X and Y be Banach spaces over C, and let B ⊂ X be open. We
say that G : B → Y is analytic if it is Fréchet differentiable. Thus, sums, products,
and compositions of analytic maps are analytic. Equivalently, G is analytic if it is
locally bounded, and if for all continuous linear maps f : C → X and h : Y → C,
the function h ◦ G ◦ f is analytic. This shows e.g. that uniform limits of analytic
functions are analytic. Assuming that B is a ball of radius r and that F is bounded
on B, a third equivalent condition is that G has derivatives of all orders at the
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center of B, and that the corresponding Taylor series has a radius of convergence
at least r and agrees with G on B.

Another fact that we will use repeatedly is that F is a Banach algebra, i.e., we
have ‖fg‖ ≤ ‖f‖‖g‖ for all f, g ∈ F .

In the remaining part of this section, f ∈ F is fixed but arbitrary, C = Ef ,
and h = f − C. We seek a solution of equation (19) of the form U = exp(D−1u),
with u a function in I−F . In order to simplify notation, EF will be identified with
GL(n,C). A short computation shows that

I
−U?f = u− ψ(u) , (31)

where
ψ(u) = −I−[(DωD−1u)E−

1 + (DωE+
2 )E−

0 + E+
0 hE−

0

+ CE−
2 + (D−1u)CE−

1 + E+
2 CE−

0

] (32)

and

E±
m =

∞∑

k=m

1
k!

(±D−1u
)k

, m = 0, 1, . . . . (33)

Proposition 9. Assume that ‖C‖ < σ/6 and ‖h‖ < 2−9σ. Let r = 2−8σ, and

denote by Br the closed ball of radius r in I−F , centered at the origin. Then ψ has
a unique fixed point uf in Br , and

‖uf‖ ≤ 16
15‖h‖ . (34)

The map (C, h) 7→ uf is analytic on the domain defined by the given bounds on
C and h. If f is real-valued, then so is uf . Furthermore, if f belongs to A then
Uf = exp(D−1uf) belongs to G.

Proof. First, recall that ex ≤ (1− x)−1 whenever 0 ≤ x < 1. This fact will be used
below and in subsequent proofs.

A straightforward estimate, using Proposition 8 and the Banach algebra property
of F , shows that ψ is an analytic map from the space I−F to itself, satisfying the
bound ∥∥ψ(u)

∥∥ ≤ e4σ−1‖u‖(‖h‖+ 10σ−1‖u‖2) . (35)

Notice that ψ(0) = −I−h has norm ≤ r/2. Thus, if we prove that ‖Dψ(u)‖ ≤ 1/2
for all u ∈ Br , then the existence and uniqueness of a fixed point uf ∈ Br follows
from the contraction mapping principle.

Let u ∈ Br and g ∈ F be fixed but arbitrary, with ‖g‖ = 1. Define ϕ : C → F
by the equation ϕ(z) = ψ(u + zg). If |z| ≤ R = 2−6σ, then u + zg is bounded in
norm by σ/48, and by using (35), we find that

‖ϕ(z)‖ ≤ 12
11‖h‖+ 11σ−1‖u + zg‖2 < R/2 . (36)

Thus, by Cauchy’s formula,

‖Dψ(u)g‖ = ‖ϕ′(0)‖ ≤ R−1 sup
|z|=R

‖ϕ(z)‖ < 1/2 . (37)
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As mentioned above, this proves the existence and uniqueness of the fixed point uf

in Br . By equation (35), this fixed point satisfies

‖uf‖ ≤ 64
63

(‖h‖+ 1
23‖uf‖

)
, (38)

which implies the bound (34).
The analyticity of the map (C, h) 7→ uf follows from the uniform convergence of

the series (33) and of the sequence ψn(0) → uf , together with the chain rule. If
f is real-valued, then the equation (32) shows that ψn(0), and thus uf as well, is
real-valued. Similarly, if f belongs to A then so does uf , implying that Uf ∈ G. ¤

For reference later on, we note that Proposition 9 and Proposition 8 imply the
bound

‖Uf − I‖ ≤ exp
(
3σ−1‖(I− E)f‖)− 1 . (39)

Lemma 10. If f = C + h, with ‖C‖ ≤ σ/6 and ‖h‖ ≤ 2−9σ, then

∥∥(Uf)?f − I
+
f
∥∥ ≤ 16σ−1‖h‖2 . (40)

Proof. An explicit computation shows that

(Uf)?f − I
+
f = I

+[
(DωD−1u)E−

1 + (DωE+
2 )E−

0 + hE−
1 + E+

1 hE−
0

+ CE−
2 + (D−1u)CE−

1 + E+
2 CE−

0

]
.

(41)

Using Proposition 8 and the Banach algebra property of F , we find that

∥∥(Uf)?f − I
+
f
∥∥ ≤ e4σ−1‖uf‖(4σ−1‖uf‖‖h‖+ 10σ−1‖uf‖2

)
. (42)

The estimate (40) is now obtained by substituting the bound on ‖uf‖ from Propo-
sition 9. ¤

Proof of Theorem 4. Using the definition (20) of N , the function h̃ in equation
(22) is given by

h̃ = T?

[
I
+
h + (Uf)?f − I

+
f
]
.

The given bounds in (22) now follow from Lemma 10 and Lemma 3. In particular,
we have ∥∥h̃

∥∥ ≤ τγ
(‖h‖+ 16σ−1‖h‖2) ≤ 33

32τγ‖h‖ , (43)

as claimed. The analyticity of N follows from the analyticity of the map f 7→ uf ,
the uniform convergence of (33), and the chain rule. If f is real-valued, then so is
uf by Proposition 9, and thus N (f) is real-valued as well. ¤

The following facts about torus-translations will be used later on. If f is a
function on Td and p a point on this torus, define (Rpf)(q) = f(q + p) for all
q ∈ Td. These translation operators Rp commute with the projections I± defined
in (18). As a result, they also commute with f 7→ Uf , as can be seen from our
construction of this map. A straightforward computation now shows that

N ◦Rp = RTp ◦ N , p ∈ Td . (44)
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4. Choice of integer matrices. We give a brief description of the the multi-
dimensional continued fractions expansion of [13], which is based on the work of
[22,14] on geodesic flows on homogeneous spaces. Then we use the estimates from
[13] on the resulting integer matrices Pn to prove Theorem 5.

Let F be a fundamental domain for the left action of Γ = SL(d,Z) on G =
SL(d,R). Consider the one-parameter subgroup of G, generated by the matrices

Et = diag
(
e−t, . . . , e−t, e(d−1)t

)
, t ∈ R , (45)

and the corresponding flow on the quotient space Γ\G, defined by ΓW 7→ ΓWEt.
Given a vector ω ∈ Rd of the form ω = (w, 1), define W ∈ G to be the matrix
obtained from the d × d identity matrix by replacing its last column vector by ω.
Then, for every t ∈ R, there exists a unique matrix P (t) ∈ Γ such that P (t)WEt

belongs to F . To a given sequence of “stopping times” tn ≥ 0 we can now associate
a sequence of matrices Pn = P (tn). The corresponding matrices Tn and Sn are
defined as in (23).

Let θ = β/(d + β).

Theorem 11. ([13]) There are constants c1, c2, c3 > 0, such that the following
holds. If ω = (w, 1) is any vector of length less than d, satisfying the Diophantine
condition (7), and if n 7→ tn is any sequence of stopping times, with t0 = 0 and
δtn = tn − tn−1 > 0, then the bounds

‖P−1
n ‖ ≤ c1 exp{(d− 1 + θ)tn},
‖Sn‖ ≤ c2 exp{(d− 1)(1− θ)δtn + d θ tn},
‖Snξ‖ ≤ c3 exp{−(1− θ)δtn + d θtn−1} ,

(46)

hold for all integers n > 0, and for all unit vectors ξ ∈ Rd that are perpendicular
to Pn−1ω.

Remark. The condition ‖ω‖ < d was added in this theorem to have constants ck

that do not depend on the length of ω. For an arbitrary Diophantine ω ∈ Rd, it is
always possible to permute basis vectors in Rd, and to rescale ω, in such a way that
the last component is equal to 1 and ‖ω‖ less than d.

Define now

σn = σ0e
−dδtn , τn = τ0 exp{−[(d− 1)θ + 1]δtn + dθtn} , (47)

with σ0 = τ0/(3c2) and τ0 = 2c3 . Then the first two inequalities in (24) are an
immediate consequence of the last two bounds in (46). In addition, we have

τ1τ2 · · · τn ≤ τn
0 exp{−(1− θ)tn + d θsn−1} , (48)

where sk = t1 + t2 + . . . tk . Define µ = (γ + 1)(1− θ)− d. Consider the constants
λn defined in (23). By using the trivial estimate λ−1

n ≤ ‖P−1
n ‖, together with the

first bound in (46), we obtain

λ−1
n

n∏

k=1

(
4τγ

k

)
σ0σ

−1
n+1 ≤ c14nτγn

0 exp{−µtn + γd θsn−1 + d δtn+1} . (49)
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This implies the third inequality in (24), provided that the sequence {tn} can be
chosen in such a way that the right hand side of (49) is less than 1. To this end, let

tn = c(1 + α)n , n = 1, 2, . . . ,

with c, α > 0 to be determined. By using that δtn+1 = αtn and sn−1 ≤ α−1tn , we
find that

λ−1
n

n∏

k=1

(
4τγ

k

)
σ0σ

−1
n+1 ≤ c14nτγn

0 exp{−εc(1 + α)n} , (50)

where ε = µ − γd θα−1 − dα . The goal is to choose α in such a way that ε > 0.
Then by taking c > 0 sufficiently large, the right hand side of (50) is less than one,
for all positive integers n, and the third bound in (24) follows. The condition ε > 0
is a quadratic inequality for α, which is satisfied by α = µ/(2d), provided that
µ2 > 4γθd2. An explicit computation shows that µ2 is larger than 4γθd2, whenever

γ >
d

(1− θ)2
[
(1− θ + 2d θ) + 2

√
θ
√

d2 − (1− θ)(d2 − d + 1− θ)
]
− 1 . (51)

The same condition also guarantees that µ, and thus α, is positive. Substituting
θ = β/(d + β) into the inequality (51), one gets the equivalent condition γ > γ0(β),
with γ0(β) as defined in equation (9). Finally, substituting the bound (51) on γ
into the definition of µ yields α = µ/(2d) > dθ/(1 − θ), which shows that τn+1 =
τ0 exp{[−(1− θ)α + dθ]tn} tends to zero as n →∞. Taking c > 0 sufficiently large
ensures that τn < 1 for all n. The analogous property 1 > σn → 0 follows now from
the first inequality in (24). This completes the proof of Theorem 5.

5. The stable manifold. In this section, we define RG transformations for families
of functions in A, parametrized by A. These transformations Nn are then used to
prove Theorem 6 and some other estimates that are needed later on. Nn acts on
a family F : A → A by composing it from the left with Nn , and from the right
with a reparametrization map on A that depends on F . Recall that Nn is naturally
defined on an open domain in F , but that its restriction to A takes values in A.
The situation is analogous for Nn , since, as will be clear from the construction,
the reparametrization map takes real values for real arguments, whenever F is real.
Thus, no generality is lost by assuming that G = GL(n,C). We will do this in the
remaining part of this paper, unless specified otherwise.

We start with a preliminary estimate on inverses of some simple maps. Denote
by b the open unit ball in A, centered at the origin. Consider the space U of analytic
functions U : b → A, equipped with the sup-norm.

Proposition 12. Let 0 < λ < 1
3 , and let U ∈ U with ‖U‖ < 1

2 . Define Λ(A) = λA

for every A ∈ A. Then Λ−1 + U has a unique right inverse Λ + V on b, with V
belonging to U and satisfying ‖V ‖ ≤ λ‖U‖. The map U 7→ V is analytic on the
domain in U defined by the given condition on U .

Proof. If A is a matrix in A of norm less than 2/3, and C a matrix in A of norm
one, then from Cauchy’s formula, we obtain

‖DU(A)C‖ ≤ 3 sup
|z|=1/3

‖U(A + zC)‖ ≤ 3‖U‖ < 3/2. (52)
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Now consider the equation for V , which can be written as ψ(V ) = V , with ψ defined
by ψ(V ) = −λU ◦ (Λ + V ). Denote by B the closed ball of radius r = 1/3 in U ,
centered at the origin. Then ψ is analytic on B, with derivative given by

Dψ(V )H = −λ
(
(DU) ◦ (Λ + V )

)
H . (53)

By equation (52), we see that ‖Dψ(V )‖ < 1/2, for all V ∈ B. Since ‖ψ(0)‖ ≤ r/2,
the map ψ is a contraction on B, and thus has a (unique) fixed point in B. This
fixed point V satisfies ‖V ‖ = ‖ψ(V )‖ ≤ λ‖U‖. The analyticity of U 7→ V follows
form the uniform convergence of ψn(0) → V for ‖U‖ < 1/2. ¤

Next, let ρ0 = 2−11σ1 and

ρn = λ−1
n 4−nπγ1

n ρ0 , πn =
n∏

j=1

τj , n = 1, 2, . . . . (54)

For every integer n ≥ 0, define An to be the vector space A, equipped with the
norm ‖s‖n = ρ−1

n ‖s‖. Denote by bn the open unit ball in An , centered at the
origin. Define Bn to be the space of analytic families F : bn → A, equipped with
the norm

‖F‖n = sup
s∈bn

‖F (s)‖n . (55)

The inclusion map from An into EA will be denoted by F 0. In other words, F 0(s) =
s. Notice that F 0 has norm one in Bn .

Let n ≥ 1. By Theorem 5, we have ρn−1 < 2−4n−6σn . Thus, if ‖F‖n−1 < 24n−3,
then F (s) belongs to the domain of Nn , for all s ∈ bn . We can associate to each
such F an analytic map

Yn,F = E(Nn ◦ F ) (56)

from bn−1 to An . Notice that, by Theorem 4, if F takes real values for real argu-
ments, then so does Yn,F . On the space of analytic maps bn−1 → A, we will use
the topology of uniform convergence (sup-norm).

Proposition 13. Assume that F ∈ Bn−1 satisfies ‖F −F 0‖n−1 < 1 and EF = F 0.
Then Yn,F : bn−1 → An has a unique right inverse Y −1

n,F : bn → bn−1 . Both Yn,F

and its right inverse depend analytically on F , on the domain defined by the given
condition on F . Furthermore,

‖Yn,F (s)− η−1
n s‖n ≤ 2−4nετγ−γ1

n ‖F − F 0‖n−1 , s ∈ bn−1 ,

‖DYn,F (s)− η−1I‖ ≤ 2−4n−6ετγ−γ1
n ‖F − F 0‖n−1 , s ∈ bn−1 ,

‖Y −1
n,F (s)− ηns‖n−1 ≤ 2−4n−1ετγ

n‖F − F 0‖n−1 , s ∈ bn .

(57)

Here, I denotes the inclusion map from An−1 into An , and ε = 24n+6σ−1
n ‖F−F 0‖ <

1.

Proof. By Theorem 4, the map Y = Yn,F satisfies the bound

‖ηnY (s)− s‖ = ‖ηnENn(F (s))− s‖
≤ ‖EF (s)− s‖+ 16σ−1

n τγ
n‖(I− E)F (s)‖2

= 16σ−1
n τγ

n‖F (s)− s‖2 ≤ 2−4n−2ετγ
n‖F − F 0‖

= 2−4nετγ−γ1
n ηnρn‖F − F 0‖n−1 ,

(58)
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with ε as defined above, for all s ∈ bn−1 . Dividing both sides by ηnρn yields the
first inequality in (57). The inequality ε < 1 follows from the fact that ‖F −F 0‖ ≤
ρn−1 < 2−4n−6σn .

Consider C ∈ A of norm one, and z ∈ C of absolute value ≤ 26. Given the
allowed size of ‖C‖ in Theorem 4, the bound (58) still holds if s is replaced by
s + zC. Thus, the second inequality in (57) is obtained from the first, using a
Cauchy estimate with contour |z| = 26.

In order to simplify notation, if λ is a scalar, then the map s 7→ λs will be
denoted by λ as well. Let now λ = ηnρn/ρn−1. Consider the space U introduced
before Proposition 12. Then U = ρ−1

n (Y − η−1
n )ρn−1 belongs to U . By using the

first inequality in (57), we obtain

‖U(s)‖ ≤ ρ−1
n ‖(Y − η−1

n )(ρn−1s)‖ ≤ 2−4 , (59)

for all s ∈ A of norm less than 1. Notice also that λ = τγ1
n /4 ≤ 1/4. Thus,

Proposition 12 guarantees the existence of a unique right inverse λ+V for λ−1 +U ,
with V belonging to U . This yields the right inverse Y −1 = ηn + ρn−1V ρ−1

n for Y
on bn . The bound on V from Proposition 12, together with the first inequality in
(57), implies that

‖Y −1(s)− ηns‖ = ρn−1‖V (ρ−1
n s)‖ ≤ 2ηnρn‖U‖ ≤ 2ηnρn‖Y − η−1

n ‖n

≤ 2−4n−1ετγ
nρn−1‖F − F 0‖n−1 ,

(60)

for all s ∈ bn . Dividing both sides by ρn−1 yields the third inequality in (57).
The analytic dependence on F , of the function Yn,F and its right inverse, follows

from Theorem 4, Proposition 12, and the chain rule. ¤
This proposition allows us to define the n-th step RG transformation Nn and the

composed RG transformation Ñn for families by

Nn(F ) = Nn ◦ F ◦ Y −1
n,F , Ñn = Nn ◦Nn−1 ◦ . . . ◦N1 . (61)

Notice that ENn(F ) = F 0 . In particular, since Nn maps constant functions to
constant functions, F 0 is a fixed point for Nn . The domain of Nn is the set of all
F ∈ Bn−1 satisfying ‖F − F 0‖n−1 < 1 and EF = F 0. Clearly, Nn is analytic on
this domain.

In what follows, we assume that γ ≥ γ2 > γ1 . Let K ≤ 1 be a fixed positive real
number satisfying

8nπγ2−γ1
n K ≤ 1/16 , (62)

for all integers n ≥ 0. Such a number K exists by Theorem 5.

Lemma 14. If F0 ∈ B0 satisfies ‖F0 − F 0‖0 < K and EF0 = F 0, then Ñn(F0) is
well defined for all n ≥ 1, and satisfies

∥∥Ñn(F0)− F 0
∥∥

n
≤ 8nπγ−γ1

n ‖F0 − F 0‖0 . (63)

Proof. Let m ≥ 1, and let F be an arbitrary family in the domain of Nm . Fix
s ∈ bm , and define s′ = Y −1

m,F (s). By Theorem 4 and Proposition 13, we have

ρ−1
m ‖Nm(F )(s)− F 0(s)‖ = ρ−1

m ‖(I− E)Nm(F (s′))‖
≤ 2τγ

mη−1
m ρ−1

m ‖(I− E)F (s′)‖
= 8τγ−γ1

m ρ−1
m−1‖F (s′)− F 0(s′)‖ .

(64)
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Consider now F0 in the domain of N1 , and assume that the claim of Lemma 14
holds for all n < m. By setting F = Ñm−1(F0) in inequality (64), we obtain

∥∥Ñm(F0)− F 0
∥∥

m
≤ 8τγ−γ1

m

∥∥Ñm−1(F0)− F 0
∥∥

m−1
≤ 8mπγ−γ1

m ‖F − F 0‖0 . (65)

This proves (63) for n = m. Under the given assumptions on F0 , the right hand side
of this inequality is less than 1, which shows that Ñm(F0) belongs to the domain of
Nm+1 . ¤

In what follows, the set of families satisfying the assumptions of Lemma 14 will
be referred to as the “domain of Ñ ”. If F0 is any family in this domain, define

Fn = Ñn(F0) , Yn = Yn,Fn−1 , Zm,n = Y −1
m+1 ◦ . . . ◦ Y −1

n−1 ◦ Y −1
n , (66)

for all integers 0 ≤ m < n.

Proposition 15. Suppose that F belongs to the domain of Ñ. Then there exists a
unique sequence m 7→ zm ∈ bm satisfying

zm−1 = Y −1
m (zm) , m = 1, 2, . . . , (67)

and this sequence is given by the limits zm = limn→∞ Zm,n(0). The maps F 7→ zm

are analytic on the domain of Ñ. Furthermore, if F takes real values for real
arguments, then zm is real.

Proof. Let F0 = F . We start by establishing a contraction property for Y −1
n . Let

s ∈ bn . By using Proposition 13, and the fact that ‖ηns‖n−1 = 1
4τγ1

n ‖s‖n , we
obtain

‖Y −1
n (s)‖n−1 ≤ ‖ηns‖n−1 + ‖Y −1

n (s)− ηns‖n−1 ≤ 9/32 . (68)

Thus, Y −1
n maps bn into bn−1/3. Furthermore, by Cauchy’s formula, the derivative

of Y −1
n on the closure of bn/3 is bounded in norm (as an operator from An to An−1)

by 1/2.
Consider now an arbitrary sequence n 7→ sn ∈ bn , with the property that sn

belongs to the closure of bn/3 for n ≥ 1. Notice that if a sequence n 7→ zn ∈ bn

satisfies (67), then it automatically has this property. Define sm,n = Zm,n(sn) for
all integers 0 ≤ m < n. By the contraction property of the maps Y −1

i , we have
‖sm,k − sm,n‖n < 2m−n whenever 1 ≤ m < n < k. This shows that n 7→ sm,n

converges as n →∞, and that the limit ŝm is independent of the sequence {sn}. In
particular, we see that ŝm = zm by choosing sn = 0 for all n. The identities (67)
are obtained by choosing sn = zn for all n.

By Proposition 13, the maps F 7→ sm,n = Zm,n(0) are analytic on the domain
of Ñ. The analyticity of F 7→ zm now follows from the uniform convergence of
sm,n → zm . If Fn−1 is real (takes real values for real arguments) for some n > 0,
then so is Yn , as mentioned earlier, and thus also Y −1

n and Fn . By induction, we
see that all matrices sm,n are real whenever F is, and the same holds for the limits
zm . ¤

Denote by B′(γ) the ball in (I − E)Aγ of radius Kρ0 , centered at the origin.
Define B(γ) = b0⊕B′(γ), that is, f ∈ Aγ belongs to B(γ) if and only if f̄ ∈ b0 and
h = f − f̄ belongs to B′(γ).
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Consider now the set Mγ defined in Theorem 6, with B(γ) as described above.

Corollary 16. Let F be a family in the domain of Ñ, and let s ∈ b0. Then F (s)
belongs to Mγ if and only if s = z0(F ).

Proof. Consider first f = F (z0). Set fn = Fn(zn) for each n > 0. By the definition
of Nn , and by Proposition 15, we have fn = Nn(fn−1) for n = 1, 2, . . . , and
f̄n = EFn(zn) = zn belongs to bn . This shows that f ∈Mγ .

Consider now a fixed s = s0 in b0 , and assume that f0 = F (s0) belongs Mγ .
Then we can define fn = Ñn(f) for all n > 0, and sn = f̄n belongs to bn . Set
F0 = F . Proceeding by induction, let n > 0, and assume fn−1 = Fn−1(sn−1). Since
sn = Yn(sn−1), and since Yn has a unique right inverse on bn by Proposition 13, we
have sn−1 = Y −1

n (sn). As a result, fn = Fn(sn). This shows that sn = Yn(sn−1)
holds for all n > 0, and thus sn = zn by Proposition 15. ¤

Proof of Theorem 6. To a function h ∈ B′(γ) we associate the family F : s 7→
s + h. This family belongs to the domain of Ñ. Now define M(h) = z0(F ). By
Corollary 16, h+ s = F (s) belongs to Mγ if and only if s = M(h). This shows that
Mγ is the graph of M over B′(γ).

The analyticity of M follows from the analyticity of z0 . Furthermore, we have
M(0) = z0(F 0) = 0. The identity DM(0) = 0 follows from the fact that, by
Proposition 13, the derivative of F 7→ Y −1

n,F vanishes at F 0, for each n ≥ 0. ¤

The following estimate will be used in the next section. Denote by In,m the
inclusion map from Am into An .

Proposition 17. Let F be in the domain of Ñ. Then the map Z ′n = Yn ◦ · · · ◦ Y1

satisfies

‖DZ ′n(s)− λ−1
n In,0‖ ≤ 2−10‖λ−1

n In,0‖ , (69)

for all s in the image of bn−1 under Z0,n−1 .

Proof. Define sk−1 = Y −1
k (sk) for k = n − 1, . . . 2, 1, starting with a fixed but

arbitrary sn−1 ∈ bn−1 . By using Proposition 13, and the fact that the inclusion
map from Ak−1 into Ak has norm ρk−1/ρk = 4ηkτ−γ1

k , we obtain

‖DYk(sk−1)‖ ≤
(
1 + 2−4k−8ck

)‖η−1
k Ik,k−1‖ , (70)

with ck = τγ
k ‖Fk−1 − F 0‖k−1 < 1. Taking products, the norm of DZ ′k(s0) can

be bounded by twice the norm of λ−1
k Ik,0 . Thus,

‖DZ ′n(s0)− λ−1
n In,0‖ = ‖DYn(sn−1) · · ·DY2(s1)DY1(s0)− λ−1

n In,0‖

≤
n∑

k=1

∥∥η−1
n · · · η−1

k+1In,k

[
DYk(sk−1)− η−1

k Ik,k−1

]
DZ ′k−1(s0)

∥∥

≤
n∑

k=1

2−4k−7ck · ‖λ−1
n In,0‖ ,
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and the inequality (69) follows. ¤

6. Reducibility. The main goal in this section is to prove Theorem 1.
Consider first the flow ΦX for a general vector field X = (ω, f .) The identity

Φt
X(q) = I +

∫ t

0

f(q + sω)Φs
X(q) ds . (71)

can be used to construct and estimate ΦX . By applying first the contraction mapping
principle, and then the cocycle identity for ΦX to improve the result, we obtain

∥∥Φt
X − I

∥∥
γ
≤ e‖tf‖γ − 1 . (72)

This bound holds for any γ ≥ 0, provided that f ∈ Aγ .
Consider now f0 ∈ Mγ and the corresponding renormalized functions fn =

Ñn(f0). In order to simplify notation, the transformation Ufn and the flow Φ(ωn,fn)

will be denoted by Un and Φn , respectively.

Lemma 18. Let f0 ∈Mγ . For each n ≥ 0 there exists Vn ∈ G0 such that

Φt
n(q) = Vn(q + tωn)−1Vn(q) , t ∈ R . (73)

These function Vn satisfy the relations Vn+1 = (Vn ◦ Tn+1)Un and the bounds

‖Vn − I‖0 ≤ 24−nπγ−γ1
n σ−1

1 ‖f0‖γ . (74)

Furthermore, the maps f0 7→ Vn are analytic.

Proof. By equation (21), we have

Φt
n(q) = Vm,n(q + tωn)−1Φηm...ηn+1t

m (Tm . . . Tn+1q)Vm,n(q) , (75)

for m > n ≥ 0, where

Vm,n(q) = Um−1(Tm−1 · · ·Tn+1q) · · ·Un+1(Tn+1q)Un(q) . (76)

For convenience later on, we also define Vn,n = I. Using the notation of Section 5,
we have fn ∈ 2bn and thus

‖ηm · · · ηn+1tfn‖γ ≤ 2λ−1
n λmρm|t| ≤ 2 · 4−mλ−1

n ρ0|t| . (77)

If m is sufficiently large, then (72) leads to the bound
∥∥Φηm...ηn+1t

m − I
∥∥

0
≤ 41−mλ−1

n ρ0|t| . (78)

Thus, Φηm...ηn+1t
m converges in G0 to the identity, as m → ∞, uniformly in t on

compact subsets of R.
Consider now the factors Uj in the product (76). By Theorem 4 and Theorem 5,

σ−1
n+1‖hn‖γ ≤ 2−n−9πγ−γ1

n ε , ε = 29σ−1
1 ‖f0‖γ < 1 . (79)
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Combining this with the estimate (39), we obtain

‖Un − I‖γ ≤ 2−n−7πγ−γ1
n ε , ‖Un‖γ ≤ e2−n−7ε . (80)

Notice that ‖U ◦ T‖0 = ‖U‖0 ≤ ‖U‖γ for any matrix T in SL(d,Z), and any U in
Fγ with γ ≥ 0. Thus, the bounds (80) can be used to estimate the product (76) in
G0 . We have

‖Vm,n‖0 ≤
m−1∏

j=n

‖Uj‖γ ≤ e2−n−6ε , (81)

and as a result,

‖Vk,n − Vm,n‖0 ≤
k−1∑

j=m

∥∥(Uj − I)Vj,n

∥∥
γ
≤ 2−m−5πγ−γ1

n ε , (82)

for k > m ≥ n ≥ 0. This shows that the limits Vn = limm→∞ Vm,n exist in G0 , and
that they have the properties described in Lemma 18. The analyticity of f0 7→ Vn

follows from the uniform convergence of Vm,n → Vn , combined with the fact that
the map M defining the manifold Mγ , the RG transformations Nn , and the map
f 7→ Uf described in Proposition 9, are all analytic. ¤

Proposition 19. The manifold Mγ is invariant under the torus-translations Rp ,
and the map f0 7→ V0 commutes with these translations.

Proof. First, we note that the translations Rp are isometries on F and commute
with E. This shows in particular that B(γ) is invariant under Rp .

The identity (44) shows that Rpf0 belongs to the domain of Ñn whenever f0 does,
and that Ñn(f0) and Ñn(Rpf0) have the same torus-average. From the definition
(29) of the sets B̃n whose intersection is Mγ , it is now clear that Mγ is invariant
under torus-translations.

The fact that f0 7→ V0 commutes with Rp follows from an explicit computation,
using the identities (44) and (76). ¤

Lemma 20. Let γ ≥ γ2 > γ1 and ε = γ − γ2 . If f0 ∈ Mγ then V0 belongs to
Gε and has a directional derivative Dω0V0 in Fε . As elements of Fε , both V0 and
Dω0V0 depend analytically on f0 . Furthermore, if f0 is the restriction to Td of an
analytic function, then so is V0 .

Proof. In order to avoid possible ambiguities, assume first that γ = γ2 . Denote
by H and H the maps that associate to each f ∈ B′(γ2) via f0 = f + M(f) the
corresponding function V0 and the value V0(0), respectively. Proposition 19 implies
that RpV0 = H(Rpf), and thus

V0(p) = H(Rpf) , p ∈ Td . (83)

By Lemma 18 the function H is bounded and analytic on B′(γ2). Consider its
Taylor series at zero,

H(f) =
∞∑

n=0

Hn(f, . . . , f) , (84)
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where Hn = DnH(0)/n! . Let r be a fixed but arbitrary positive real number less
than Kρ0 . Then the series (84) converges absolutely in the ball ‖f‖γ2 ≤ r, and the
derivatives of H satisfy a bound ‖Hn‖ ≤ cr−n as n-linear functionals on An

γ2
.

Next, we allow γ ≥ γ2 but keep H as a function on B′(γ2). Concerning the
condition f0 ∈ Mγ in Lemma 20, we note that Mγ = Mγ2 ∩ B(γ), which follows
from the definition (29) of the sets B̃n , and from the fact that B(γ) is a subset of
B(γ2).

Assume now that f belongs to B′(γ) and satisfies ‖f‖γ < r. If we use the
expansion

Rpf =
∑

ν∈Zd

FνEν(p) , Fν(q) = fνEν(q) , Eν(q) = eiν·q , (85)

where fν are the Fourier coefficients of f , then V0 can be represented as follows:

V0(p) =
∞∑

n=0

∑

ν1,... ,νn∈Zd

Hn(Fν1 , . . . , Fνn)Eν1(p) · · ·Eνn(p) . (86)

By using the bound

∣∣Hn(Fν1 , . . . , Fνn)
∣∣ ≤ cr−n

n∏

j=1

‖Fνj‖γ2 = cr−n
n∏

j=1

‖fνj‖‖Eνj‖γ2 , (87)

and the fact that ‖Eν‖γ2‖Eν‖ε = ‖Eν‖γ , we obtain

‖V0‖ε ≤
∞∑

n=0

∑

ν1,... ,νn∈Zd

cr−n
n∏

j=1

‖fνj‖‖Eνj‖γ

= c

∞∑
n=0

(
r−1

∑

ν∈Zd

‖fν‖‖Eν‖γ

)n

=
c

1− r−1‖f‖γ
.

(88)

This shows that V0 ∈ Gε , as claimed. From the identities (71) and (73), we see
that Dω0V0 belongs to Fε . The analytic dependence of V0 (and thus Dω0V0) on f
follows from the uniform convergence (88) of the Taylor expansion for f 7→ V0 on
any ball ‖f‖γ ≤ r′ with r′ < r < Kρ0 . Finally, if f is the restriction to Td of an
analytic function, then due to the exponential decay of the Fourier coefficients fν ,
we have

r−1
∑

ν∈Zd

‖fν‖‖Eν‖γ2e
δ‖ν‖ < 1 , (89)

for δ > 0 sufficiently small. By using this bound to estimate the sum (86), one
finds that the sum is absolutely convergent in the region |Im (pj)| < δ/2. Thus, V0

extends analytically to this region. ¤
The following lemma concerns the situation described in the introduction, where

f = f0 is of the form (10). These functions f define a closed linear subspace A1
γ of

Aγ , which can also be characterized by the identity

f(q + (0, r)) = e−r·Jf(q)er·J , q ∈ Td , r ∈ R` . (90)
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Lemma 21. Let γ ≥ γ2 +1 with γ2 > γ1 , and assume that f0 belongs to Mγ ∩A1
γ .

Set f = f0 and V = V0 . If g = Θ?f , then the flow for Y = (w, g .) is given by
equation (12), for some C ∈ A. The corresponding map f0 7→ C is analytic.

Proof. The first equality in (12) follows from Lemma 18 and the definition (11).
Define

φt(x) = V (x + tw)Φt
Y (x)V (x)−1 , (91)

for t ∈ R and x ∈ Tm. Notice that φ is the flow for a skew system Z = (w, h .) on
Tm ×G, and since V ∈ G1 by Lemma 20, the function h belongs to A0 .

From the first equality in (12), we have

φt(x) = V (x + tw)etAV (x + tω)−1 . (92)

Consider now an arbitrary sequence {tj} such that tjκ → 0 on the torus T`, as
j → ∞. Then exp(tjκ · J) → I. Furthermore, dist(tjω, tjw) → 0 on the torus Td,
and since V is of class C1, we have φt+tj (x) → φt(x) uniformly in x, if t = 0. By the
cocycle identity for the flow φ, the same holds for any t ∈ R, and the convergence
is uniform in t. This implies (see e.g. [8]) that the function t 7→ φt(x) is periodic or
quasiperiodic, with frequencies in K = {κ1, . . . , κ`}. As a result,

h(x + tw) = φ̇t(x)φt(x)−1 (93)

is also periodic or quasiperiodic in t, with frequencies in K. But the frequency
module of t 7→ h(x+ tw) is clearly a subset of W = {w1, . . . , wm}, and since W ∩K
is empty, h has to be constant. Setting C = h, we obtain φt(x) = etC , and the
identity (12) now follows from (91). A computation of h(x) from the equations (93)
and (92) yields C = V AV −1 − (DκV )V −1, evaluated at x. This identity (between
matrices, if x is fixed), together with Lemma 20, shows that C depends analytically
on f . ¤

In order to complete the proof of Theorem 1, consider now the case where G
is a proper Lie subgroup of GL(n,C). By Proposition 9, the restrictions to A of
the transformations Nn take again values in A, and so the transformations Nn

preserves the subspace of families taking values in A. Thus, the map M described
in Theorem 6 takes values in A when restricted to A, as claimed in Theorem 1.
Similarly, the fact that Uf ∈ G whenever f = f0 ∈ A implies that the matrices
(76) belong to G, and so the same is true for the limit V = V0(q). The same
arguments apply to the case where G is a Lie subgroup of GL(n,R), if we use that
by Proposition 15, the parameter values z0 defining the map M are all real in this
case. The remaining claims of Theorem 1 now follow from Theorem 6, Lemma 18,
and Lemma 20.

7. The special case G=SL(2,R). In this section, G is the group of unimodular
2× 2 matrices over R, and A is the corresponding Lie algebra of real traceless 2× 2
matrices. As explained in the introduction, our approach to skew flows with nonzero
fibered rotation number is to convert them to skew flows with zero (or near-zero)
rotation number, which involves increasing the dimension of the torus. As far as
renormalization is concerned, the main difficulty with this approach is that the
space A1 of functions f of the form (10) is not invariant under renormalization.
Superficially, the fact that the torus-average of f ∈ A1 is necessarily a constant
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multiple of J may seem to explain the statement about one-parameter families in
Theorem 2. However, this property is neither invariant under renormalization, nor
does is guarantee that the flow for X = (ω, f .) remains bounded. Below we will
introduce an alternative property, that is more closely linked to hyperbolicity, and
invariant.

First, we give a simple sufficient condition for a skew system to have nonzero
fibered rotation number.

Proposition 22. If det(f(q)) > 0 for all q ∈ Td, then %(X) 6= 0.

Proof. If we set τ(t) = tr(Jf(q)) and δ(t) = det(f(q)), with q = q0 + tω, then an
explicit calculation shows that (14) can be written as

2α̇ = −τ + ρ sin(2α + β) , ρ =
√

τ2 − 4δ , (94)

for some angle β depending on f(q) and on u0 . Notice that τ2 ≥ 4δ, since f(q) is
traceless. Thus, if f(q) is always elliptic (δ > 0), then α̇ is bounded away from zero
and the rotation number cannot vanish. ¤

One of our goals is to show that a vector field X = (ω, f .) with f ∈ A1 close
to zero cannot generate a hyperbolic flow, by excluding the possibility that the
renormalized functions fn have the following property.

Definition 23. Let S1 be the set of unit vectors in R2. We say that a vector field
X = (ω, f .) has the expanding cone property if for every q ∈ Td, there exists an open
cone C(q) in R2 not intersecting its negative, with vertex at zero, and a unit vector
u(q) in this cone, such that the following holds. The map q 7→ S1∩C(q) defines two
continuous functions from Td to S1. The function q 7→ u(q) is continuous as well,
and homotopic to a constant. Furthermore, for every q ∈ Td, the cone Φt

X(q)C(q) is
contained in C(q + tω) for all t > 0, and the length of Φt

X(q)u(q) tends to infinity as
t →∞.

We note that the expanding cone property is invariant under coordinate changes
of the form (16) or (5), with V continuous and homotopic to the identity. A simple
condition that implies this property is given in the following proposition.

Proposition 24. Assume that f : Td → A is continuous and of the form f = C +h,
with C ∈ A symmetric and ‖h(q)‖ < ‖C‖/4 for all q ∈ Td. Then X = (ω, f .) has
the expanding cone property.

Proof. Our assumptions imply that the eigenvalues of C are ±‖C‖. Let u0 be a unit
eigenvector of C for the eigenvalue ‖C‖, and define C0 to be the set of all nonzero
vectors in R2 whose angle with u0 is less than π/4. Consider first the case f ≡ C.
Then for every nonzero v on the boundary of C0 , the vector fv points to the interior
of the cone C0 . Thus, the solutions of equation (13), with initial condition v0 in
C0 , remains in C0 for all times t > 0. A straightforward computation shows that
under the given assumptions of h, the same remains true for f = C + h. Thus, X
has the expanding cone property, with the family of cones being q 7→ C0 , and with
u(q) = u0 for all q. Notice that no condition on ω is needed. ¤

Lemma 25. If f belongs to A1 then X = (ω, f .) cannot have the expanding cone
property.
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Proof. Consider first an arbitrary f ∈ A such that X = (ω, f .) has the expanding
cone property. Let q ∈ Td be fixed. Using the notation of Definition 23, denote by
A(q) the set of all nonzero v0 ∈ R2 such that v(t) = Φt

X(q)v0 belongs to C(q+tw) for
some (and thus each sufficiently large) positive t. This set is clearly open. Notice
that if v0 is any nonzero vector in R2, with the property that v(t) = Φt

X(q)v0 tends
to infinity as t → ∞, then v0 belongs to either A(q) or −A(q). This follows from
the fact that Φt

X(q) is area-preserving (so the angle between v(t) and Φt
X(q)u(q) has

to approach zero), and that the opening angles of our cones are bounded away from
zero. Thus, given that the two disjoint open sets ±A(q) cannot cover all of R2 \{0},
it is not possible that |v(t)| → ∞ as t →∞, for every nonzero v0 ∈ R2.

Assume now for contradiction that f belongs to A1. Define zr(x) = erJu(q),
with u as described in Definition 23. Then Φt

Y (x)zr(x) = e(r+tκ)JΦt
X(q)u(q) tends

to infinity as t → ∞. But as r increases from 0 to 2π, the vectors zr(x) cover
all of S1, since u is homotopic to a constant function. This implies that Φt

Y (x)v0

tends to infinity (in length) for each nonzero v0 ∈ R2, which was shown above to
be impossible. ¤

Now we are ready to renormalize. Denote by J the one-dimensional subspace of
A, consisting of real multiples of the matrix J .

Lemma 26. Let h ∈ A1 ∩ B′(γ), and define F (s) = h + s for s ∈ b0 . Then the
(unique) value s = z0(F ) where the family F intersects Mγ belongs to J, and it is
the unique matrix in b0 ∩ J for which F (s) has a zero fibered rotation number.

Proof. Recall that z0 = z0(F ) is real, by Proposition 15. Assume for contradiction
that z0 does not belong to J. Then for sufficiently large m, the sets Z0,m(bm/3)
have an empty intersection with J. Denote by n the smallest value of m for which
this intersection is empty, and define Jk = Z0,n−1(bn−1/k) ∩ J.

Let r = ‖η−1
n In,n−1‖. The bound (70) shows that the image under Yn of 1

3bn−1

is contained in r
2bn , and that the image of bn−1 contains 2r

3 bn . The first property
implies that Z ′n(J3) intersects r

2bn at some point s outside 1
3bn. Now consider

the connected component of Z ′n(J1) containing s. By Proposition 17, this curve
is sufficiently “parallel” to J in order to intersect the subspace tr(J∗s) = 0 at
some point sn = Z ′n(s0) that lies inside 2r

3 bn , but outside 1
4bn. The matrix sn is

symmetric with norm ≥ ρn/4, and by Lemma 14, we have ‖Fn(sn)− sn‖ < ρn/16.
Thus, by Proposition 24, the vector field for Fn(sn) has the expanding cone property.
Given that this property is invariant under coordinate changes of the form (16) or
(5), with V continuous and homotopic to the identity, F (s0) has the same property.
But since s0 ∈ J, the function F (s0) belongs to A1, and we get a contradiction with
Lemma 25. This shows that z0 belongs to J.

Lemma 18 shows that %(F (z0)) = 0. Consider now s0 ∈ b0 ∩ J different from
z0 . Then there exists n > 0 such that s0 lies in Z0,m(bm) for all m < n, but not in
Z0,n(bn), so the norm of sn = Z ′n(s0) is at least ρn . On the other hand, zn = Z ′n(z0)
has norm less than ρn/3, as was shown in the proof of Proposition 15. Thus,
‖sn − zn‖ > 2‖zn‖. Denote by B and C the symmetric and antisymmetric parts
of sn − zn , respectively. By Proposition 17, we have ‖C‖ > 10‖B‖. In addition,
‖Fn(sn) − sn‖ < ρn/16 by Lemma 14. As a result, ‖C‖ > ‖Fn(sn) − C‖, which
by Proposition 22 implies that Fn(sn) cannot have a vanishing fibered rotation
number. Thus, we cannot have %(F (s0)) = 0, since this property is preserved under
renormalization. ¤
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Proof of Theorem 2. We can follow the sketch given after the statement of this
theorem. A straightforward computation shows that ‖L‖ and ‖L−1‖ can be bounded
by 2‖κ−1A‖1/2 Thus, the indicated map g 7→ f = (Θ?)−1(cL−1gL), with c = ‖ω‖−1,
admits the bound

‖f‖ ≤ 22γ4c · 4‖κ−1A‖‖g −A‖ ≤ 22γ16a‖g −A‖ . (95)

This shows that the image B0 under f 7→ g, of the domain B = B(γ) for which
Theorem 1 holds, contains a ball of radius R = Kr0/(22γ16a), centered at the
constant function A. The remaining claims of Theorem 2 are now an immediate
consequence of Theorem 1, Lemma 26, and Lemma 21. ¤
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