Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.5/23701
Título: Proof-of-Principle That Cellular Automata Can Be Used to Predict Infestation Risk by Reticulitermes grassei (Blattodea: Isoptera)
Autor: Sequeira, João G.N.
Nobre, Tânia
Duarte, Sónia
Jones, Dennis
Esteves, Bruno
Nunes, Lina
Palavras-chave: subterranean termites
infestation risk
cellullar automata
model
Data: 2022
Editora: MDPI
Citação: Sequeira, J.G.N.; Nobre, T.; Duarte, S.; Jones, D.; Esteves, B.; Nunes, L. Proof-of-Principle That Cellular Automata Can Be Used to Predict Infestation Risk by Reticulitermes grassei (Blattodea: Isoptera). Forests 2022, 13, 237
Resumo: Over the past few decades, species distribution modelling has been increasingly used to monitor invasive species. Studies herein propose to use Cellular Automata (CA), not only to model the distribution of a potentially invasive species but also to infer the potential of the method in risk prediction of Reticulitermes grassei infestation. The test area was mainland Portugal, for which an available presence-only dataset was used. This is a typical dataset type, resulting from either distribution studies or infestation reports. Subterranean termite urban distributions in Portugal from 1970 to 2001 were simulated, and the results were compared with known records from both 2001 (the publication date of the distribution models for R. grassei in Portugal) and 2020. The reported model was able to predict the widespread presence of R. grassei, showing its potential as a viable prediction tool for R. grassei infestation risk in wooden structures, providing the collection of appropriate variables. Such a robust simulation tool can prove to be highly valuable in the decision-making process concerning pest management
Peer review: yes
URI: http://hdl.handle.net/10400.5/23701
DOI: https://doi.org/10.3390/f13020237
Aparece nas colecções:ISA - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
LEAF-forests-13-00237-v2.pdf2,08 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.