| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 3.55 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Removal of introns from pre-messenger RNAs (pre-mRNAs) via splicing provides a versatile means of genetic regulation that is often disrupted in human diseases. To decipher how splicing occurs in real time, we directly examined with single-molecule sensitivity the kinetics of intron excision from pre-mRNA in the nucleus of living human cells. By using two different RNA labeling methods, MS2 and λN, we show that β-globin introns are transcribed and excised in 20-30 s. Furthermore, we show that replacing the weak polypyrimidine (Py) tract in mouse immunoglobulin μ (IgM) pre-mRNA by a U-rich Py decreases the intron lifetime, thus providing direct evidence that splice-site strength influences splicing kinetics. We also found that RNA polymerase II transcribes at elongation rates ranging between 3 and 6 kb min(-1) and that transcription can be rate limiting for splicing. These results have important implications for a mechanistic understanding of cotranscriptional splicing regulation in the live-cell context.
Description
© 2013 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Keywords
Pedagogical Context
Citation
Cell reports, 4(6), 1144–1155
Publisher
Elsevier
