Name: | Description: | Size: | Format: | |
---|---|---|---|---|
101.11 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
One of the fundamental topics in extragalactic astronomy concerns the formation and evolution of galaxies through cosmic time. A common approach for shedding more light on this subject is the exploration of the young stages of the Universe, when the first stars and Super Massive Black Holes (SMBHs) were formed and therefore started ionising the intergalactic medium. This Epoch of Re-ionisation (EoR) is considered one of the key areas of extragalactic research that only recently we were able to explore, mostly due to the growing number of identified high-redshift Active Galactic Nuclei (AGNs). In this thesis, we focus on the exploration of the EoR and the SMBH/AGN population, both from the theoretical and observational point of view. Regarding the former, we employ eight state-of-the-art cosmological galaxy formation and evolution models with the main goal of exploring their predictions regarding the number of AGNs that the current and next surveys would observe at the EoR. Furthermore, we combine one of these models with a software that simulates the observations from X-ray telescopes, generating a future possible survey of 1 deg2 using the next-generation telescope, Athena. Having these predictions in hand, the project advances by trying to identify high-redshift radio galaxies in deep and well-studied surveys. In this regard, we explore two selection criteria that are widely used and were successful in the past in detecting high-redshift galaxies, aiming to provide further evidence regarding their efficiency of studying the EoR.
Description
Keywords
radio galáxias buracos negros supermassivos galáxias a alto redshift época de re-ionização radio-surveys radio-galaxies super massive black holes high-redshift galaxies epoch of re-ionisation radio-surveys