Publication
Machine learning for target discovery in drug development
| dc.contributor.author | Rodrigues, Tiago | |
| dc.contributor.author | Bernardes, Gonçalo J. L. | |
| dc.date.accessioned | 2022-01-21T16:37:20Z | |
| dc.date.available | 2022-01-21T16:37:20Z | |
| dc.date.issued | 2020 | |
| dc.description | © 2019 Elsevier Ltd. All rights reserved. | pt_PT |
| dc.description.abstract | The discovery of macromolecular targets for bioactive agents is currently a bottleneck for the informed design of chemical probes and drug leads. Typically, activity profiling against genetically manipulated cell lines or chemical proteomics is pursued to shed light on their biology and deconvolute drug-target networks. By taking advantage of the ever-growing wealth of publicly available bioactivity data, learning algorithms now provide an attractive means to generate statistically motivated research hypotheses and thereby prioritize biochemical screens. Here, we highlight recent successes in machine intelligence for target identification and discuss challenges and opportunities for drug discovery. | pt_PT |
| dc.description.sponsorship | T.R. is an Investigador Auxiliar supported by FCT Portugal (CEECIND/00887/2017). T.R. acknowledges the H2020 (TWINN-2017 ACORN, Grant 807281) and FCT / FEDER (02/SAICT/2017, Grant 28333) for funding. G.J.L.B. is a Royal Society University Research Fellow (URF∖R∖180019) and a FCT Investigator (IF/00624/2015). | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | Current opinion in chemical biology, 56, 16-22 | pt_PT |
| dc.identifier.doi | 10.1016/j.cbpa.2019.10.003 | pt_PT |
| dc.identifier.eissn | 1879-0402 | |
| dc.identifier.issn | 1367-5931 | |
| dc.identifier.uri | http://hdl.handle.net/10451/50919 | |
| dc.language.iso | eng | pt_PT |
| dc.peerreviewed | yes | pt_PT |
| dc.publisher | Elsevier | pt_PT |
| dc.relation | CEECIND/00887/2017 | pt_PT |
| dc.relation | Nanoparticle-Based Therapeutic Applications and Detection of Carbon Monoxide Releasing Molecules | |
| dc.relation.publisherversion | https://www.sciencedirect.com/journal/current-opinion-in-chemical-biology | pt_PT |
| dc.subject | Chemical probes | pt_PT |
| dc.subject | Chemical proteomics | pt_PT |
| dc.subject | Drug discovery | pt_PT |
| dc.subject | Machine learning | pt_PT |
| dc.subject | Target identification | pt_PT |
| dc.title | Machine learning for target discovery in drug development | pt_PT |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardTitle | Nanoparticle-Based Therapeutic Applications and Detection of Carbon Monoxide Releasing Molecules | |
| oaire.awardURI | info:eu-repo/grantAgreement/EC/H2020/807281/EU | |
| oaire.citation.endPage | 22 | pt_PT |
| oaire.citation.startPage | 16 | pt_PT |
| oaire.citation.title | Current Opinion in Chemical Biology | pt_PT |
| oaire.citation.volume | 56 | pt_PT |
| oaire.fundingStream | H2020 | |
| person.familyName | Rodrigues | |
| person.familyName | Bernardes | |
| person.givenName | Tiago | |
| person.givenName | Gonçalo | |
| person.identifier | 1357049 | |
| person.identifier.ciencia-id | 6219-8658-2307 | |
| person.identifier.orcid | 0000-0002-1581-5654 | |
| person.identifier.orcid | 0000-0001-6594-8917 | |
| person.identifier.scopus-author-id | 57226266154 | |
| person.identifier.scopus-author-id | 14046757500 | |
| project.funder.identifier | http://doi.org/10.13039/501100008530 | |
| project.funder.name | European Commission | |
| rcaap.rights | restrictedAccess | pt_PT |
| rcaap.type | article | pt_PT |
| relation.isAuthorOfPublication | 8c21143c-1085-42f7-aa23-c313a6a6bbc9 | |
| relation.isAuthorOfPublication | d1a48067-77b1-4413-b1c7-602fb18c62c0 | |
| relation.isAuthorOfPublication.latestForDiscovery | 8c21143c-1085-42f7-aa23-c313a6a6bbc9 | |
| relation.isProjectOfPublication | 842e9afc-122e-4eb4-917a-cb387e924316 | |
| relation.isProjectOfPublication.latestForDiscovery | 842e9afc-122e-4eb4-917a-cb387e924316 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Machine_learning.pdf
- Size:
- 995.13 KB
- Format:
- Adobe Portable Document Format
