| Nome: | Descrição: | Tamanho: | Formato: | |
|---|---|---|---|---|
| 336.03 KB | Adobe PDF |
Orientador(es)
Resumo(s)
We prove that the closure of the closed orbits of a generic geodesic flow on a closed Riemannian n ≥ 2 dimensional manifold is a uniformly hyperbolic set if the shadowing property holds C²- -robustly on the metric. We obtain analogous results using weak specification and the shadowing property allowing bounded time reparametrization.
Descrição
Palavras-chave
Geodesic Flow Hyperbolic Sets Shadowing Specification
Contexto Educativo
Citação
Bessa, Mário, João Lopes Dias and Maria Joana Torres .(2020). “Hyperbolicity through stable shadowing for generic geodesic flows”. Physica D: Nonlinear Phenomena 406, 132423. (Search PDF in 2023)
Editora
Elsevier
