Repository logo
 
Publication

Forecasting the abundance of disease vectors with deep learning

dc.contributor.authorCeia-Hasse, Ana
dc.contributor.authorSousa, Carla A.
dc.contributor.authorGouveia, Bruna R.
dc.contributor.authorCapinha, César
dc.date.accessioned2024-06-25T14:23:42Z
dc.date.available2024-06-25T14:23:42Z
dc.date.issued2023
dc.description.abstractArboviral diseases such as dengue, Zika, chikungunya or yellow fever are a worldwide concern. The abundance of vector species plays a key role in the emergence of outbreaks of these diseases, so forecasting these numbers is fundamental in preventive risk assessment. Here we describe and demonstrate a novel approach that uses state-of-the-art deep learning algorithms to forecast disease vector abundances. Unlike classical statistical and machine learning methods, deep learning models use time series data directly as predictors and identify the features that are most relevant from a predictive perspective. We demonstrate for the first time the application of this approach to predict short-term temporal trends in the number of Aedes aegypti mosquito eggs across Madeira Island for the period 2013 to 2019. Specifically, we apply the deep learning models to predict whether, in the following week, the number of Ae. aegypti eggs will remain unchanged, or whether it will increase or decrease, considering different percentages of change. We obtained high predictive performance for all years considered (mean AUC = 0.92 ± 0.05 SD). Our approach performed better than classical machine learning methods. We also found that the preceding numbers of eggs is a highly informative predictor of future trends. Linking our approach to disease transmission or importation models will contribute to operational, early warning systems of arboviral disease risk.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCeia-Hasse, A., Sousa, C. A., Gouveia, B. R. & César Capinha (2023). Forecasting the abundance of disease vectors with deep learning. Ecological Informatics, 78, 102272. https://doi.org/10.1016/j.ecoinf.2023.102272pt_PT
dc.identifier.doi10.1016/j.ecoinf.2023.102272pt_PT
dc.identifier.eissn1878-0512
dc.identifier.issn1574-9541
dc.identifier.urihttp://hdl.handle.net/10451/65130
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationPTDC/SAU-PUB/30089/2017pt_PT
dc.relationGHTM-UID/Multi/04413/2013pt_PT
dc.relationCEECIND/02037/2017pt_PT
dc.relationUIDB/00295/2020pt_PT
dc.relationUIDP/00295/2020pt_PT
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1574954123003011pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectMachine learningpt_PT
dc.subjectMosquitopt_PT
dc.subjectDenguept_PT
dc.subjectForecastpt_PT
dc.subjectTime series classificationpt_PT
dc.titleForecasting the abundance of disease vectors with deep learningpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.startPage102272pt_PT
oaire.citation.titleEcological Informaticspt_PT
oaire.citation.volume78pt_PT
person.familyNameCapinha
person.givenNameCésar
person.identifier.ciencia-id7714-2A88-CDE3
person.identifier.orcid0000-0002-0666-9755
person.identifier.ridK-6439-2017
person.identifier.scopus-author-id32867555000
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication4c666e7e-4ba8-4a41-8064-d26b3b9fc0f8
relation.isAuthorOfPublication.latestForDiscovery4c666e7e-4ba8-4a41-8064-d26b3b9fc0f8

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Ceia-Hasse_Sousa_Gouveia_Capinha_2023.pdf
Size:
2.47 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.2 KB
Format:
Item-specific license agreed upon to submission
Description: