Repository logo
 
Loading...
Thumbnail Image
Publication

Vitis vinifera secondary metabolism as affected by sulfate depletion: diagnosis through phenylpropanoid pathway genes and metabolites

Use this identifier to reference this record.
Name:Description:Size:Format: 
REP-PPB-S.Amancio e out.pdf479.71 KBAdobe PDF Download

Advisor(s)

Abstract(s)

Grapevine (Vitis vinifera L.) is rich in phenylpropanoid compounds, namely flavonoids and stilbenes which, present in most tissues, are described as antioxidants and known to accumulate in response to biotic and abiotic stress. Grapevine is then a choice model for studying the interplay between the phenylpropanoid pathway and nutrient deficiency. Here we report the response to sulfur deficiency ( S) of flavonoids and stilbenes biosynthetic pathways in chlorophyll tissues (plantlets) and cell culture. Anthocyanins and trans-resveratrol accumulated in plantlets and trans-resveratrol glucoside in cell cultures in response to sulfur deficiency, while a significant decrease in chlorophyll was observed in S plantlets. The up-regulation of chalcone synthase gene and the downstream flavonoid biosynthesis genes dihydroflavonol reductase and anthocyanidin synthase matched the accumulation of anthocyanins in S V. vinifera plantlets. The mRNA level of stilbene synthase gene(s) was correlated tightly with the increase in trans-resveratrol and trans-resveratrol glucoside levels, respectively in S plantlets and cell cultures. As a whole, the present study unveil that V. vinifera under sulfur deficiency allocates resources to the phenylpropanoid pathway, probably consecutive to inhibition of protein synthesis, which can be advantageous to resist against oxidative stress symptoms evoked by S conditions

Description

Keywords

anthocyanins chalcone synthase stilbenes stilbenes synthase sulfur deficiency Vitis vinifera

Pedagogical Context

Citation

"Plant Physiology and Biochemistry". ISSN 0981-9428. 66 (2013) p. 118-126

Research Projects

Organizational Units

Journal Issue

Publisher

Elsevier

CC License