Repository logo
 
No Thumbnail Available
Publication

A Language Modeling Approach for the Classification of Audio Music

Use this identifier to reference this record.
Name:Description:Size:Format: 
RT-09-02.pdf112.7 KBAdobe PDF Download

Advisor(s)

Abstract(s)

The purpose of this paper is to present a method for the classification of musical pieces based on a language modeling approach. The method does not require any metadata and is used with raw audio format. It consists in 1) transforming music data into a sequence of symbols 2) building a model for each category by estimating n-grams from the sequences of symbols derived from the training set. The results obtained on three audio datasets show that, providing the amount of data is sufficient for estimating the transitions probabilities of the model, the approach performs very well. The performance achieved with the ISMIR 2004 Genre classification dataset is, to our knowledge, one of the best published in the literature.

Description

Keywords

Machine Learning Music Information Retrieval

Pedagogical Context

Citation

Research Projects

Organizational Units

Journal Issue

Publisher

CC License