Repository logo
 
Publication

Predicting growing stock volume of Eucalyptus plantations using 3-D point clouds derived from UAV imagery and ALS data

dc.contributor.authorGuerra-Hernández, Juan
dc.contributor.authorCozensa, Diogo N.
dc.contributor.authorCardil, Adrian
dc.contributor.authorSilva, Carlos Alberto
dc.contributor.authorBotequim, Brigite
dc.contributor.authorSoares, Paula
dc.contributor.authorSilva, Margarida
dc.contributor.authorGonzález-Ferreiro, Eduardo
dc.contributor.authorDiaz-Varela, Ramón
dc.date.accessioned2019-11-04T11:26:12Z
dc.date.available2019-11-04T11:26:12Z
dc.date.issued2019
dc.description.abstractEstimating forest inventory variables is important in monitoring forest resources and mitigating climate change. In this respect, forest managers require flexible, non-destructive methods for estimating volume and biomass. High-resolution and low-cost remote sensing data are increasingly available to measure three-dimensional (3D) canopy structure and to model forest structural attributes. The main objective of this study was to evaluate and compare the individual tree volume estimates derived from high-density point clouds obtained from airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) in Eucalyptus spp. plantations. Object-based image analysis (OBIA) techniques were applied for individual tree crown (ITC) delineation. The ITC algorithm applied correctly detected and delineated 199 trees from ALS-derived data, while 192 trees were correctly identified using DAP-based point clouds acquired fromUnmannedAerialVehicles(UAV), representing accuracy levels of respectively 62% and 60%. Addressing volume modelling, non-linear regression fit based on individual tree height and individual crown area derived from the ITC provided the following results: Model E ciency (Mef) = 0.43 and 0.46, Root Mean Square Error (RMSE) = 0.030 m3 and 0.026 m3, rRMSE = 20.31% and 19.97%, and an approximately unbiased results (0.025 m3 and 0.0004 m3) using DAP and ALS-based estimations, respectively. No significant di erence was found between the observed value (field data) and volume estimation from ALS and DAP (p-value from t-test statistic = 0.99 and 0.98, respectively). The proposed approaches could also be used to estimate basal area or biomass stocks in Eucalyptus spp. plantationspt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationForests 2019, 10, 905pt_PT
dc.identifier.doi10.3390/f10100905
dc.identifier.urihttp://hdl.handle.net/10400.5/18568
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relation.publisherversionwww.mdpi.com/journal/forestspt_PT
dc.subjectunmanned aerial vehicles (UAV)pt_PT
dc.subjectforest inventorypt_PT
dc.subjectvolumept_PT
dc.subjectcanopy height model (CHM)pt_PT
dc.subjectobject based image analysis (OBIA)pt_PT
dc.subjectstructure from motion (SfM)pt_PT
dc.titlePredicting growing stock volume of Eucalyptus plantations using 3-D point clouds derived from UAV imagery and ALS datapt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleForestspt_PT
person.familyNameBotequim
person.familyNameSoares
person.givenNameBrigite
person.givenNamePaula
person.identifier943186
person.identifier639834
person.identifier.ciencia-id891C-A412-594F
person.identifier.ciencia-id0219-879B-E8AA
person.identifier.orcid0000-0002-6661-190X
person.identifier.orcid0000-0002-7603-5467
person.identifier.ridF-8251-2010
person.identifier.scopus-author-id36766730000
person.identifier.scopus-author-id55702522029
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationcde6b896-3b50-492e-972a-538aef76137f
relation.isAuthorOfPublication9b96eb5a-3ccf-4974-b302-cdda02af8f02
relation.isAuthorOfPublication.latestForDiscovery9b96eb5a-3ccf-4974-b302-cdda02af8f02

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
REP-CEF-forests-10-00905-v2.pdf
Size:
3.32 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: