Logo do repositório
 
A carregar...
Logótipo do projeto
Projeto de investigação

Institute for Health and Bioeconomy

Autores

Publicações

Exploring the multifaceted potential of a peptide fraction derived from Saccharomyces cerevisiae metabolism: antimicrobial, antioxidant, antidiabetic, and anti-inflammatory properties
Publication . Branco, Patrícia; Maurício, Elisabete Muchagato; Costa, Ana; Ventura, Diogo; Roma-Rodrigues, Catarina; Duarte, Maria Paula; Fernandes, Alexandra R.; Prista, Catarina
The rising demand for minimally processed, natural, and healthier food products has led to the search for alternative and multifunctional bioactive food components. Therefore, the present study focuses on the functional proprieties of a peptide fraction derived from Saccharomyces cerevisiae metabolism. The antimicrobial activity of the peptide fraction is evaluated against various foodborne pathogens, including Candida albicans, Candida krusei, Escherichia coli, Listeria monocytogenes, and Salmonella sp. The peptide fraction antioxidant properties are assessed using FRAP and DPPH scavenging capacity assays. Furthermore, the peptide fraction’s cytotoxicity is evaluated in colorectal carcinoma and normal colon epithelial cells while its potential as an antidiabetic agent is investigated through -amylase and -glucosidase inhibitory assays. The results demonstrate that the 2–10 kDa peptide fraction exhibits antimicrobial effects against all tested microorganisms, except C. krusei. The minimal inhibitory concentration for E. coli, L. monocytogenes, and Salmonella sp. remains consistently low, at 0.25 mg/mL, while C. albicans requires a higher concentration of 1.0 mg/mL. Furthermore, the peptide fraction displays antioxidant activity, as evidenced by DPPH radical scavenging activity of 81.03%, and FRAP values of 1042.50 32.5 M TE/mL at 1.0 mg/mL. The peptide fraction exhibits no cytotoxicity in both tumor and non-tumoral human cells at a concentration up to 0.3 mg/mL. Moreover, the peptide fraction presents anti-inflammatory activity, significantly reducing the expression of the TNF gene by more than 29.7% in non-stimulated colon cells and by 50% in lipopolysaccharide-stimulated colon cells. It also inhibits the activity of the carbohydrate digestive enzymes -amylase (IC50 of 199.3 0.9 g/mL) and -glucosidase (IC20 of 270.6 6.0 g/mL). Overall, the findings showed that the peptide fraction exhibits antibacterial, antioxidant, anti-inflammatory, and antidiabetic activity. This study represents a step forward in the evaluation of the functional biological properties of S. cerevisiae bioactive peptides.
Chitin-Glucan complex hydrogels: physical-chemical characterization, stability, in vitro drug permeation, and biological assessment in primary cells
Publication . Araújo, Diana; Rodrigues, Thomas; Roma-Rodrigues, Catarina; Alves, Vitor D.; Fernandes, Alexandra R.; Freitas, Filomena
Chitin-glucan complex (CGC) hydrogels were fabricated by coagulation of the biopolymer from an aqueous alkaline solution, and their morphology, swelling behavior, mechanical, rheological, and biological properties were studied. In addition, their in vitro drug loading/release ability and permeation through mimic-skin artificial membranes (Strat-M) were assessed. The CGC hydrogels prepared from 4 and 6 wt% CGC suspensions (Na51*4 and Na51*6 hydrogels, respectively) had polymer contents of 2.40 0.15 and 3.09 0.22 wt%, respectively, and displayed a highly porous microstructure, characterized by compressive moduli of 39.36 and 47.30 kPa and storage moduli of 523.20 and 7012.25 Pa, respectively. Both hydrogels had a spontaneous and almost immediate swelling in aqueous media, and a high-water retention capacity (>80%), after 30 min incubation at 37 C. Nevertheless, the Na51*4 hydrogels had higher fatigue resistance and slightly higher-water retention capacity. These hydrogels were loaded with caffeine, ibuprofen, diclofenac, or salicylic acid, reaching entrapment efficiency values ranging between 13.11 0.49% for caffeine, and 15.15 1.54% for salicylic acid. Similar release profiles in PBS were observed for all tested APIs, comprising an initial fast release followed by a steady slower release. In vitro permeation experiments through Strat-M membranes using Franz diffusion cells showed considerably higher permeation fluxes for caffeine (33.09 g/cm2/h) and salicylic acid (19.53 g/cm2/h), compared to ibuprofen sodium and diclofenac sodium (4.26 and 0.44 g/cm2/h, respectively). Analysis in normal human dermal fibroblasts revealed that CGC hydrogels have no major effects on the viability, migration ability, and morphology of the cells. Given their demonstrated features, CGC hydrogels are very promising structures, displaying tunable physical properties, which support their future development into novel transdermal drug delivery platforms.
Metabolic background, not photosynthetic physiology, determines drought and drought recovery responses in C3 and C2 moricandias
Publication . Pinheiro, Carla; Emiliani, Giovanni; Marino, Giovanni; Fortunato, Ana S.; Haworth, Matthew; De Carlo, Anna; Chaves, Maria Manuela; Loreto, Francesco; Centritto, Mauro
Distinct photosynthetic physiologies are found within the Moricandia genus, both C3-type and C2-type representatives being known. As C2-physiology is an adaptation to drier environments, a study of physiology, biochemistry and transcriptomics was conducted to investigate whether plants with C2-physiology are more tolerant of low water availability and recover better from drought. Our data on Moricandia moricandioides (Mmo, C3), M. arvensis (Mav, C2) and M. suffruticosa (Msu, C2) show that C3 and C2-type Moricandias are metabolically distinct under all conditions tested (well-watered, severe drought, early drought recovery). Photosynthetic activity was found to be largely dependent upon the stomatal opening. The C2-type M. arvensis was able to secure 25–50% of photosynthesis under severe drought as compared to the C3-type M. moricandioides. Nevertheless, the C2-physiology does not seem to play a central role in M. arvensis drought responses and drought recovery. Instead, our biochemical data indicated metabolic differences in carbon and redox-related metabolism under the examined conditions. The cell wall dynamics and glucosinolate metabolism regulations were found to be major discriminators between M. arvensis and M. moricandioides at the transcription level.
Novel Hydrogel Membranes Based on the Bacterial Polysaccharide FucoPol: Design, Characterization and Biological Properties
Publication . Araújo, Diana; Martins, Matilde; Concórdio-Reis, Patrícia; Roma-Rodrigues, Catarina; Morais, Maria; Delgado Alves, Vitor; Fernandes, Alexandra; Freitas, Filomena
FucoPol, a fucose-rich polyanionic polysaccharide, was used for the first time for the preparation of hydrogel membranes (HMs) using Fe3+ as a crosslinking agent. This study evaluated the impact of Fe3+ and FucoPol concentrations on the HMs’ strength. The results show that, above 1.5 g/L, Fe3+ concentration had a limited influence on the HMs’ strength, and varying the FucoPol concentration had a more significant effect. Three different FucoPol concentrations (1.0, 1.75 and 2.5 wt.%) were combined with Fe3+ (1.5 g/L), resulting in HMs with a water content above 97 wt.% and an Fe3+ content up to 0.16 wt.%. HMs with lower FucoPol content exhibited a denser porous microstructure as the polymer concentration increased. Moreover, the low polymer content HM presented the highest swelling ratio (22.3 1.8 g/g) and a lower hardness value (32.4 5.8 kPa). However, improved mechanical properties (221.9 10.2 kPa) along with a decrease in the swelling ratio (11.9 1.6 g/g) were obtained for HMs with a higher polymer content. Furthermore, all HMs were non-cytotoxic and revealed anti-inflammatory activity. The incorporation of FucoPol as a structuring agent and bioactive ingredient in the development of HMs opens up new possibilities for its use in tissue engineering, drug delivery and wound care management.
In the flow of molecular miniaturized fungal diagnosis
Publication . Zolotareva, Maria; Cascalheira, Francisco; Caneiras, Catia; Bárbara, Cristina; Caetano, Diogo Miguel; Teixeira, Miguel Cacho
The diagnosis of fungal infections presents several challenges and limitations, stemming from the similarities in symptomatology, diversity of underlying pathogenic species, complexity of fungal biology, and scarcity of rapid, affordable, and point-of-care approaches. In this review, we assess technological advances enabling the conversion of cutting-edge laboratory molecular diagnostic methods to cost-effective microfluidic devices. The most promising strategies toward the design of DNA sequence-based fungal diagnostic systems, capable of capturing and deciphering the highly informative DNA of the pathogen and adapted for resource-limited settings, are discussed, bridging fungal biology, molecular genetics, microfluidics, and biosensors.

Unidades organizacionais

Descrição

Palavras-chave

Contribuidores

Financiadores

Entidade financiadora

Fundação para a Ciência e a Tecnologia

Programa de financiamento

6817 - DCRRNI ID

Número da atribuição

LA/P/0140/2020

ID