Repository logo
 
Loading...
Project Logo
Research Project

TARGETING SIGNALING PATHWAYS AS THERAPY FOR HUMAN CANCER

Authors

Publications

Activation of PI3K Is indispensable for Interleukin 7–mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells
Publication . Barata, João T.; Silva, Ana; Brandao, Joana G.; Nadler, Lee M.; Cardoso, Angelo A.; Boussiotis, Vassiliki A.
Interleukin (IL)-7 is essential for normal T cell development. Previously, we have shown that IL-7 increases viability and proliferation of T cell acute lymphoblastic leukemia (T-ALL) cells by up-regulating Bcl-2 and down-regulating the cyclin-dependent kinase inhibitor p27kip1. Here, we examined the signaling pathways via which IL-7 mediates these effects. We investigated mitogen-activated protein kinase (MEK)-extracellular signal-regulated kinase (Erk) and phosphatidylinositol-3-kinase (PI3K)-Akt (protein kinase B) pathways, which have active roles in T cell expansion and have been implicated in tumorigenesis. IL-7 induced activation of the MEK-Erk pathway in T-ALL cells; however, inhibition of the MEK-Erk pathway by the use of the cell-permeable inhibitor PD98059, did not affect IL-7-mediated viability or cell cycle progression of leukemic cells. IL-7 induced PI3K-dependent phosphorylation of Akt and its downstream targets GSK-3, FOXO1, and FOXO3a. PI3K activation was mandatory for IL-7-mediated Bcl-2 up-regulation, p27kip1 down-regulation, Rb hyperphosphorylation, and consequent viability and cell cycle progression of T-ALL cells. PI3K signaling was also required for cell size increase, up-regulation of CD71, expression of the glucose transporter Glut1, uptake of glucose, and maintenance of mitochondrial integrity. Our results implicate PI3K as a major effector of IL-7-induced viability, metabolic activation, growth and proliferation of T-ALL cells, and suggest that PI3K and its downstream effectors may represent molecular targets for therapeutic intervention in T-ALL.
Molecular and functional evidence for activity of murine IL-7 on human lymphocytes
Publication . Barata, João T.; Silva, Ana; Abecasis, Miguel; Carlesso, Nadia; Cumano, Ana; Cardoso, Angelo A.
Although interleukin-7 (IL-7) is essential for human and murine lymphopoiesis and homeostasis, clear disparities between these species regarding the role of IL-7 during B-cell development suggest that other, subtler differences may exist. One basic unsolved issue of IL-7 biology concerns cross-species activity, because in contrast to the human ortholog, the ability of murine (m)IL-7 to stimulate human cells remains unresolved. Establishing whether two-way cross-species reactivity occurs is fundamental for evaluating the role of IL-7 in chimeric human-mouse models, which are the most versatile tools for studying human lymphoid development and disease in vivo. Here, we show that mIL-7 triggers the same signaling pathways as human (h)IL-7 in human T cells, promoting similar changes in viability, proliferation, size, and immunophenotype, even at low concentrations. This ability is not confined to T cells, because mIL-7 mediates cell growth and protects human B-cell precursors from dexamethasone-induced apoptosis. Importantly, endogenous mIL-7 produced in the mouse thymic microenvironment stimulates human T cells, because their expansion in chimeric fetal thymic organ cultures is inhibited by a mIL-7-specific neutralizing antibody. Our results demonstrate that mIL-7 affects human lymphocytes and indicate that mouse models of human lymphoid development and disease must integrate the biological effects of endogenous IL-7 on human cells.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

POCI

Funding Award Number

POCTI/CBO/34914/2000

ID