A carregar...
Projeto de investigação
Mechanisms of nutrient-sensing by the malaria parasite
Financiador
Autores
Publicações
Host AMPK Is a modulator of Plasmodium liver infection
Publication . Ruivo, Margarida; Vera, Iset; Sales Dias, Joana; Meireles, Patricia; Gural, Nil; Bhatia, Sangeeta N.; Mota, Maria M.; Mancio-Silva, Liliana
Manipulation of the master regulator of energy homeostasis AMP-activated protein kinase (AMPK) activity is a strategy used by many intracellular pathogens for successful replication. Infection by most pathogens leads to an activation of host AMPK activity due to the energetic demands placed on the infected cell. Here, we demonstrate that the opposite is observed in cells infected with rodent malaria parasites. Indeed, AMPK activity upon the infection of hepatic cells is suppressed and dispensable for successful infection. By contrast, an overactive AMPK is deleterious to intracellular growth and replication of different Plasmodium spp., including the human malaria parasite, P. falciparum. The negative impact of host AMPK activity on infection was further confirmed in mice under conditions that activate its function. Overall, this work establishes the role of host AMPK signaling as a suppressive pathway of Plasmodium hepatic infection and as a potential target for host-based antimalarial interventions.
Targeting liver stage malaria with metformin
Publication . Vera, Iset; Ruivo, Margarida; LEMOS ROCHA, Leonardo Filipe; Marques, Sofia; Bhatia, Sangeeta N.; Mota, Maria M.; Mancio-Silva, Liliana
Despite an unprecedented 2 decades of success, the combat against malaria - the mosquito-transmitted disease caused by Plasmodium parasites - is no longer progressing. Efforts toward eradication are threatened by the lack of an effective vaccine and a rise in antiparasite drug resistance. Alternative approaches are urgently needed. Repurposing of available, approved drugs with distinct modes of action are being considered as viable and immediate adjuncts to standard antimicrobial treatment. Such strategies may be well suited to the obligatory and clinically silent first phase of Plasmodium infection, where massive parasite replication occurs within hepatocytes in the liver. Here, we report that the widely used antidiabetic drug, metformin, impairs parasite liver stage development of both rodent-infecting Plasmodium berghei and human-infecting P. falciparum parasites. Prophylactic treatment with metformin curtails parasite intracellular growth in vitro. An additional effect was observed in mice with a decrease in the numbers of infected hepatocytes. Moreover, metformin provided in combination with conventional liver- or blood-acting antimalarial drugs further reduced the total burden of P. berghei infection and substantially lessened disease severity in mice. Together, our findings indicate that repurposing of metformin in a prophylactic regimen could be considered for malaria chemoprevention.
Unidades organizacionais
Descrição
Palavras-chave
Contribuidores
Financiadores
Entidade financiadora
Fundação para a Ciência e a Tecnologia
Programa de financiamento
3599-PPCDT
Número da atribuição
PTDC/SAU-MET/118199/2010
