Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Lignin as feedstock for nanoparticles production
Publication . Lourenço, Ana; Gominho, Jorge
Lignin is an interesting natural polymer with characteristics that contribute for the development and growth of plants. Lignin presents high variability associated with the diversity of plants, which presents great challenges for its recovery after delignification (technical lignin), because lignin is prone to irreversible degradation, producing recalcitrant condensed structures that are difficult to disassemble afterward. Although researchers have made efforts to obtain lignin in high yields and with good characteristics for specific uses, this is not an easy task. The mind-set has changed and new biorefinery concepts are emerging, where lignin is the primary goal to achieve, and the so-called lignin-first approach has arisen. Lignin can be obtained firstly to prevent structural degradations, enabling an efficient and highly selectivity of the lignin monomers. Therefore, this concept places lignin and its valorization at the head of the biorefinery. However, lignin valorization is still a challenge, and to overcome this, lignin nanoparticles (LNPs) production presents a good way to achieve this goal. This chapter presents a resume of the several techniques to attain lignin, how to produce LNPs, and their possible applications (from pharmaceutical to the automobile and polymer industries).
Communication Clean Forest—Project Concept and Early Results
Publication . Gomes, João; Puna, Jaime; Marques, António; Gominho, Jorge; Lourenço, Ana; Galhano, Rui; Ozkan, Sila
The Clean Forest project aims to valorize forest biomass wastes (and then prevent their occurrence as a fuel source in forests), converting it to bioenergy, such as the production of 2nd generation synthetic biofuels, like bio-methanol, bio-DME, and biogas, depending on the process operating conditions. Valorization of potential forest waste biomass thus enhances the reduction of the probability of occurrence of forest fires and, therefore, presents a major value for local rural communities. The proposed process is easy to implement, and energetically, it shows significantly reduced costs than the conventional process of gasification. Additionally, the input of energy necessary to promote electrolysis can be achieved with solar energy, using photovoltaic panels. This paper refers to the actual progress of the project, as well as the further steps which consist of a set of measures aimed at the minimization of the occurrence of forest fires by the valorization of forest wastes into energy sources.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

3599-PPCDT

Funding Award Number

PCIF/GVB/0167/2018

ID