Repository logo
 
Loading...
Project Logo
Research Project

ANTARCRUST - Biocrust biodiversity as an indicator to diagnose, monitor and predict climate change impacts in Antarctic ecosystems’ functioning

Authors

Publications

Microscale is key to model current and future Maritime Antarctic vegetation
Publication . Matos, Paula; Rocha, Bernardo; Pinho, Pedro; Miranda, Vasco; Pina, Pedro; Goyanes, Gabriel; Vieira, Gonçalo
Despite being one of the most pristine regions in the world, Antarctica is currently also one of the most vulnerable to climate change. Antarctic vegetation comprises mostly lichens and bryophytes, complemented in some milder regions of Maritime Antarctica by two vascular plant species. Shifts in the spatial patterns of these three main vegetation groups have already been observed in response to climate change, highlighting the urgent need for the development of comprehensive large-scale ecological models of the effects of climate change. Besides climate, Antarctic terrestrial vegetation is also strongly influenced by non-climatic microscale conditions related to abiotic and biotic factors. Nevertheless, the quantification of their importance in determining vegetation patterns remains unclear. The objective of this work was to quantify the importance of abiotic and biotic microscale conditions in determining the spatial cover patterns of the major functional types, lichens, vascular plants and bryophytes, explicitly determining the likely confinement of each functional type to the microscale conditions, i.e., their ecological niche. Microscale explained >60 % of the spatial variation of lichens and bryophytes and 30 % of vascular plants, with the niche analysis suggesting that each of the three functional types may be likely confined to specific microscale conditions in the studied gradient. Models indicate that the main microscale ecological filters are abiotic but show the potential benefits of including biotic variables and point to the need for further clarification of vegetation biotic interactions' role in these ecosystems. Altogether, these results point to the need for the inclusion of microscale drivers in ecological models to track and forecast climate change effects, as they are crucial to explain present vegetation patterns in response to climate, and for the interpretation of ecological model results under a climate change perspective.
Microclimate simulation and lichen-based validation analyzing street trees' impact on atmospheric pollutant dispersion at the urban canyon scale
Publication . Girotti, Carolina; Matos, Paula; Shimomura, Alessandra R. Prata; Kurokawa, Fernando Akira; Correia, Ezequiel; Lopes, António
This study investigates the impact of street trees on air pollutant concentrations, specifically NO₂ and PM10, in urban environments using computational fluid dynamics (CFD) simulations with ENVI-met software. The study explores how different levels of tree cover influence the dispersion of atmospheric pollutants, focusing on three scenarios: current tree cover, complete removal of street trees, and a 50 % reduction in tree cover. Avenida da Liberdade in Lisbon, known for its high tree density, serves as the study site. To ensure the accuracy of the simulations, the method was validated using air quality data from a local monitoring station, supplemented by an analysis of lichen diversity on 80 trees, a common biomonitor for pollution. The results indicate that both NO₂ and PM10 concentrations are higher under tree canopies, with the greatest increase observed on the windward side of the avenue. Specifically, PM10 levels rose by up to 2.97 %, and NO₂ by up to 25.84 % in the scenario with the highest tree cover. Moreover, the study highlights that street trees have a more significant effect on NO₂ concentrations compared to PM10. The findings suggest that, in this specific case—where there is a high density of trees and low wind speed— reducing tree coverage and improve permeability to the wind, could improve pollution dispersion. This study provides key findings into the complex role of urban trees in air quality and offers a foundation for future research into the modelling of additional pollutants, such as PM2.5 and ozone, to gain a more comprehensive understanding of their impacts on urban air quality.
Rice fields play a complementary role within the landscape mosaic supporting structurally and functionally distinct waterbird communities
Publication . Paulino, João; Granadeiro, José Pedro; Matos, Paula; Catry, Teresa
This study aims to understand how the structure and functions of waterbird communities in rice fields compare to those in other habitats within an agricultural landscape encompassing five habitats: saltpans, lakes, intertidal areas, pastures and rice fields. Over 2 years, waterbird counts were conducted every 15 days in these habitats. Non-metric multidimensional scaling was used to compare the composition and functional structure of the waterbird communities. Differences in both metrics were found among habitats throughout the year. These appear to be driven by spatial (presence of permanent water cover) and temporal gradients (yearly seasonality). Rice fields occupy a central position within the gradients. The composition and functional structure of waterbird communities in rice fields undergo significant changes throughout the year associated with the annual rice production cycle. Other habitats maintain more consistent communities, reflecting their more stable environmental conditions. Rice fields play a complementary role to other habitats in the landscape, likely acting as a buffer, partially mitigating the loss of some waterbird species amid the global decline of natural wetlands.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

CEEC IND 3ed

Funding Award Number

2020.03347.CEECIND/CP1614/CT0001

ID