Loading...
Research Project
The Notch-Delta signalling pathway in the reproductive function of the mouse and cow
Funder
Authors
Publications
Dynamics of notch pathway expression during mouse testis post-natal development and along the spermatogenic cycle
Publication . Murta, Daniel; Batista, Marta; Silva, Elisabete; Trindade, Alexandre; Henrique, Domingos; Duarte, António; Lopes da Costa, Luís
The transcription and expression patterns of Notch pathway components (Notch 1–3, Delta1 and 4, Jagged1) and effectors
(Hes1, Hes2, Hes5 and Nrarp) were evaluated (through RT-PCR and IHC) in the mouse testis at key moments of post-natal
development, and along the adult spermatogenic cycle. Notch pathway components and effectors are transcribed in the
testis and expressed in germ, Sertoli and Leydig cells, and each Notch component shows a specific cell-type and timewindow
expression pattern. This expression at key testis developmental events prompt for a role of Notch signaling in prepubertal
spermatogonia quiescence, onset of spermatogenesis, and regulation of the spermatogenic cycle.
Notch signaling in the epididymal epithelium regulates sperm motility and is transferred at a distance within epididymosomes
Publication . Murta, D.; Batista, M.; Silva, E.; Trindade, A.; Henrique, Domingos; Duarte, A.; Lopes da Costa, L.
Spermatozoa undergo sequential maturation changes during their transit along the epididymis. These changes are modulated by the epididymal epithelium and require a finely tuned gene expression. The Notch cell signaling pathway is a major regulator of cell fate decisions in several tissues, including the testis. Here, we evaluated the transcription and expression patterns of Notch components (Notch1-3, Dll1, Dll4, and Jagged1) and effectors (Hes1-2 and Hes5) in the adult mouse epididymis, and evaluated the role of Notch signaling in the epididymis through its in vivo blockade following administration of an inhibitor (DAPT). Notch components and effectors were dynamically transcribed and expressed in the epididymis and vas deferens, each segment exhibiting a specific combination of epithelial receptor/ligand/effector expression patterns. Nuclear detection of Notch effectors indicates that Notch signaling was active. Notch components (but not effectors) were identified in the cytoplasmic droplet of spermatozoa, in a dynamic and specific pattern along the epididymis. In addition, Notch components were identified within large and small vesicles in the epididymal lumen. A purified population of these membranous vesicles from different epididymal segments was obtained, and through dot blot analysis, it was confirmed that Notch components were carried within these vesicles in a dynamic pattern along the epididymal lumen. We hypothesize that these vesicles (epididymosomes) allow Notch signaling at distance from epididymal epithelial cells to spermatozoa. DAPT-induced in vivo Notch signaling blockade, although showing a low efficiency, disrupted the expression patterns of Notch components and effectors in the epididymal epithelium and in spermatozoa, and significantly decreased sperm motility, although not affecting male fertility. These results prompt for a regulatory role of Notch signaling in epididymal epithelial function and sperm maturation.
In vivo notch signaling blockade induces abnormal spermatogenesis in the mouse
Publication . Murta, Daniel; Batista, Marta; Trindade, Alexandre; Silva, Elisabete; Henrique, Domingos; Duarte, António; Lopes-da-Costa, Luís
In a previous study we identified active Notch signaling in key cellular events occurring at adult spermatogenesis. In this study, we evaluated the function of Notch signaling in spermatogenesis through the effects of in vivo Notch blockade. Adult CD1 male mice were either submitted to a long term DAPT (?-secretase inhibitor) or vehicle treatment. Treatment duration was designed to attain one half the time (25 days) or the time (43 days) required to accomplish a complete cycle of spermatogenesis. Blockade of Notch signaling was depicted from decreased transcription of Notch effector genes. Notch signaling blockade disrupted the expression patterns of Notch components in the testis, induced male germ cell fate aberrations, and significantly increased germ cell apoptosis, mainly in the last stages of the spermatogenic cycle, and epididymis spermatozoa morphological defects. These effects were more pronounced following the 43 day than the 25 day DAPT treatment schedule. These results indicate a relevant regulatory role of Notch signaling in mammalian spermatogenesis.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PTDC/CVT/105022/2008
