A carregar...
Projeto de investigação
Not Available
Financiador
Autores
Publicações
Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation
Publication . Arez, Maria; Eckersley-Maslin, Melanie; Klobuar, Tajda; von Gilsa Lopes, João; Krueger, Felix; Mupo, Annalisa; Raposo, Ana Cláudia; Oxley, David; Mancino, Samantha; Gendrel, Anne-Valerie; Jesus, Bruno Bernardes De; da Rocha, Simão T.
Reprogramming of somatic cells into induced Pluripotent Stem Cells (iPSCs) is a major leap towards personalised approaches to disease modelling and cell-replacement therapies. However, we still lack the ability to fully control the epigenetic status of iPSCs, which is a major hurdle for their downstream applications. Epigenetic fidelity can be tracked by genomic imprinting, a phenomenon dependent on DNA methylation, which is frequently perturbed in iPSCs by yet unknown reasons. To try to understand the causes underlying these defects, we conducted a thorough imprinting analysis using IMPLICON, a high-throughput method measuring DNA methylation levels, in multiple female and male murine iPSC lines generated under different experimental conditions. Our results show that imprinting defects are remarkably common in iPSCs, but their nature depends on the sex of donor cells and their response to culture conditions. Imprints in female iPSCs resist the initial genome-wide DNA demethylation wave during reprogramming, but ultimately cells accumulate hypomethylation defects irrespective of culture medium formulations. In contrast, imprinting defects on male iPSCs depends on the experimental conditions and arise during reprogramming, being mitigated by the addition of vitamin C (VitC). Our findings are fundamental to further optimise reprogramming strategies and generate iPSCs with a stable epigenome.
Generation and characterization of induced pluripotent stem cell line (IBBISTi004-A) from an Angelman syndrome patient carrying a class II deletion of the maternal chromosome 15q11.2-q13
Publication . Maranga, Carina; Pereira, Carolina; Raposo, Ana Cláudia; Vieira, Adriana A.; Duarte, Sofia; Bekman, Evguenia; Milagre, Inês; da Rocha, Simão T.
Angelman Syndrome is a rare neurodevelopmental disorder caused by several (epi)genetic alterations. The patients present strong neurological impairment due to the absence of a functional maternal UBE3A gene in neurons. Here, we generated and characterized a new induced pluripotent stem cell (iPSC) line from a female child with Angelman syndrome harbouring a class II deletion. iPSCs were reprogrammed from fibroblasts using Sendai viruses. The new iPSCs express pluripotency markers, are capable of trilineage in vitro differentiation and have the expected imprinting status of Angelman syndrome. These iPSCs are a valuable tool to elucidate the pathophysiological mechanisms associated with this disease.
Unidades organizacionais
Descrição
Palavras-chave
Contribuidores
Financiadores
Entidade financiadora
Fundação para a Ciência e a Tecnologia
Programa de financiamento
CEEC IND 2017
Número da atribuição
CEECIND/01234/2017/CP1396/CT0002
