Repository logo
 
Loading...
Profile Picture
Person

Neves Matias, Márcia Alexandra

Search Results

Now showing 1 - 2 of 2
  • Heat stress mitigation by exploring UTCI hotspots and enhancing thermal comfort through street trees
    Publication . Silva, Tiago; Matias, Márcia; Girotti, Carolina; Vasconcelos, João; Lopes, António
    Heat stress mitigation actions must be carefully planned in order to achieve efective outcomes. By integrating urban planning guidelines with urban climate knowledge, substantial benefts can be achieved for the community. In Lisbon, the study area, urban planning guidelines are strict in relation to the tree species which should be used for planting. This study examined these species environmental contributions to the community, especially in regard to heat stress mitigation in two urban canyons previously found as UTCI hotspots. For this, microclimatic Envi-met simulations were run which allowed recalculation of the UTCI hotspot analysis and to assess individual species contribution to possible mitigation eforts. Results demonstrated the ability of these trees to lower air temperature and the Universal Thermal Climate Index (UTCI). By reducing UTCI temperatures between 3.19 °C and 6.27 °C on a hot summer’s day, these trees were also able to transform an identifed UTCI hotspot into a coldspot. From the studied species, Pyrus calleryana was found to be the most efective species for mitigating thermal stress, although all three species performed well. Regarding community services, according to the iTree tool, Cercis siliquastrum had the greatest overall impact. These results give to the municipal urban planning which tree species should be prioritized in terms of climate action, as well as a methodological framework to assess at local scale which areas should be intervened.
  • Climate walking: A comparison study of mobile weather stations and their relevance for urban planning, design, human health and well-being
    Publication . Silva, Tiago; Ramusga, R.; Matias, Márcia; Amaro, J.; Bonifácio, Ana; Reis, Cláudia; Chokhachian, A.; Lopes, G.; Almeida, A.; Frazão, J.; Vasconcelos, J.; Lopes, António; Morgado, Paulo
    Microclimate conditions affect the outdoor urban way of life for humans. These conditions directly impact people’s health and well-being, such as access to medical care or a healthy lifestyle. Human thermal comfort is paramount for people’s health, both physical and mental. In this paper, the study compares two microclimate mobile weather stations (MWS) based on a set of users’-based assessment criteria (usability, user-friendliness, sensors) and thermal comfort (UTCI) results accuracy. The comparison was carried out through continuous mobile transect measurements lasting an hour and a half, conducted on two summer days in Lisbon across distinct urban morphological settings. This research was developed to assist future researchers in urban climatology with the design of microscale studies, particularly in relation to equipment selection, performance assessment, and methodological procedures. In terms of performance, we found the RMSE to be 1.3 ◦C for air temperature, 1.6 % for relative humidity, 1.3 m/s for wind speed, and 8.4 W/m2 for solar radiation for MWS 1, and 1.5 ◦C for air temperature, 2.9 % for relative humidity, 1.5 m/s for wind speed, and 11.6 W/m2 for radiation for MWS 2. Both MWS units exhibited a consistent performance, however, MWS 1 demonstrated greater overall accuracy, particularly in the measurement of air temperature, relative humidity, and wind speed. Differences were also observed between the sensors of MWS 1 and MWS 2, as well as in the MWS usability, factors which may be significant depending on the users’ objectives and available resources. Despite this, both MWS units were deemed suitable for deployment in urban environments, with MWS 2 offering a more intuitive user experience. The findings of this study are particularly relevant for those beginning mobile meteorological measurements, as well as for researchers aiming to address urban heat stress and enhance public well-being and thermal comfort through their work. However, the study is limited by its short duration and geographic scope, and further research is needed to expand its applicability to diverse urban settings.